RegisterModel | R Documentation |
Register Model step collection for workflow.
sagemaker.workflow::StepCollection
-> RegisterModel
new()
Construct steps '_RepackModelStep' and '_RegisterModelStep' based on the estimator.
RegisterModel$new( name, content_types, response_types, inference_instances, transform_instances, estimator = NULL, model_data = NULL, depends_on = NULL, repack_model_step_retry_policies = NULL, register_model_step_retry_policies = NULL, model_package_group_name = NULL, model_metrics = NULL, approval_status = NULL, image_uri = NULL, compile_model_family = NULL, display_name = NULL, description = NULL, tags = NULL, model = NULL, drift_check_baselines = NULL, ... )
name
(str): The name of the training step.
content_types
(list): The supported MIME types for the input data (default: None).
response_types
(list): The supported MIME types for the output data (default: None).
inference_instances
(list): A list of the instance types that are used to generate inferences in real-time (default: None).
transform_instances
(list): A list of the instance types on which a transformation job can be run or on which an endpoint can be deployed (default: None).
estimator
The estimator instance.
model_data
The S3 uri to the model data from training.
depends_on
(List[str] or List[Step]): The list of step names or step instances the first step in the collection depends on
repack_model_step_retry_policies
(List[RetryPolicy]): The list of retry policies for the repack model step
register_model_step_retry_policies
(List[RetryPolicy]): The list of retry policies for register model step
model_package_group_name
(str): The Model Package Group name, exclusive to 'model_package_name', using 'model_package_group_name' makes the Model Package versioned (default: None).
model_metrics
(ModelMetrics): ModelMetrics object (default: None).
approval_status
(str): Model Approval Status, values can be "Approved", "Rejected", or "PendingManualApproval" (default: "PendingManualApproval").
image_uri
(str): The container image uri for Model Package, if not specified, Estimator's training container image is used (default: None).
compile_model_family
(str): The instance family for the compiled model. If specified, a compiled model is used (default: None).
display_name
(str): The display name of the step.
description
(str): Model Package description (default: None).
tags
(List[dict[str, str]]): The list of tags to attach to the model package group. Note that tags will only be applied to newly created model package groups; if the name of an existing group is passed to "model_package_group_name", tags will not be applied.
model
(object or Model): A PipelineModel object that comprises a list of models which gets executed as a serial inference pipeline or a Model object.
drift_check_baselines
(DriftCheckBaselines): DriftCheckBaselines object (default: None).
...
: additional arguments to 'create_model'.
clone()
The objects of this class are cloneable with this method.
RegisterModel$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.