TuningStep | R Documentation |
Tuning step for workflow.
sagemaker.workflow::Entity
-> sagemaker.workflow::Step
-> sagemaker.workflow::ConfigurableRetryStep
-> TuningStep
arguments
The arguments dict that is used to call 'create_hyper_parameter_tuning_job'. NOTE: The CreateHyperParameterTuningJob request is not quite the args list that workflow needs. The HyperParameterTuningJobName attribute cannot be included.
properties
A Properties object representing 'DescribeHyperParameterTuningJobResponse' and 'ListTrainingJobsForHyperParameterTuningJobResponse' data model.
new()
Construct a TuningStep, given a 'HyperparameterTuner' instance. In addition to the tuner instance, the other arguments are those that are supplied to the 'fit' method of the 'sagemaker.tuner.HyperparameterTuner'.
TuningStep$new( name, tuner, display_name = NULL, description = NULL, inputs = NULL, job_arguments = NULL, cache_config = NULL, depends_on = NULL, retry_policies = NULL )
name
(str): The name of the tuning step.
tuner
(HyperparameterTuner): A 'sagemaker.tuner.HyperparameterTuner' instance.
display_name
(str): The display name of the tuning step.
description
(str): The description of the tuning step.
inputs
: Information about the training data. Please refer to the “fit()“ method of the associated estimator, as this can take any of the following forms:
(str) - The S3 location where training data is saved.
(dict[str, str] or dict[str, sagemaker.inputs.TrainingInput]) - If using multiple channels for training data, you can specify a dict mapping channel names to strings or :func:'~sagemaker.inputs.TrainingInput' objects.
(sagemaker.inputs.TrainingInput) - Channel configuration for S3 data sources that can provide additional information about the training dataset. See :func:'sagemaker.inputs.TrainingInput' for full details.
(sagemaker.session.FileSystemInput) - channel configuration for a file system data source that can provide additional information as well as the path to the training dataset.
(sagemaker.amazon.amazon_estimator.RecordSet) - A collection of Amazon :class:~'Record' objects serialized and stored in S3. For use with an estimator for an Amazon algorithm.
(sagemaker.amazon.amazon_estimator.FileSystemRecordSet) - Amazon SageMaker channel configuration for a file system data source for Amazon algorithms.
(list[sagemaker.amazon.amazon_estimator.RecordSet]) - A list of :class:~'sagemaker.amazon.amazon_estimator.RecordSet' objects, where each instance is a different channel of training data.
(list[sagemaker.amazon.amazon_estimator.FileSystemRecordSet]) - A list of :class:~'sagemaker.amazon.amazon_estimator.FileSystemRecordSet' objects, where each instance is a different channel of training data.
job_arguments
(List[str]): A list of strings to be passed into the processing job. Defaults to 'None'.
cache_config
(CacheConfig): A 'sagemaker.workflow.steps.CacheConfig' instance.
depends_on
(List[str] or List[Step]): A list of step names or step instance this 'sagemaker.workflow.steps.ProcessingStep' depends on
retry_policies
(List[RetryPolicy]): A list of retry policy
to_request()
Updates the dictionary with cache configuration.
TuningStep$to_request()
get_top_model_s3_uri()
Get the model artifact s3 uri from the top performing training jobs.
TuningStep$get_top_model_s3_uri(top_k, s3_bucket, prefix = "")
top_k
(int): the index of the top performing training job tuning step stores up to 50 top performing training jobs, hence a valid top_k value is from 0 to 49. The best training job model is at index 0
s3_bucket
(str): the s3 bucket to store the training job output artifact
prefix
(str): the s3 key prefix to store the training job output artifact
clone()
The objects of this class are cloneable with this method.
TuningStep$clone(deep = FALSE)
deep
Whether to make a deep clone.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.