| buffer.dist,SpatialPointsDataFrame,SpatialPixelsDataFrame-method | R Documentation | 
Derive buffer distances using the raster::distance function, so that these can be used as predictors for spatial prediction i.e. to account for spatial proximity to low, medium and high values.
## S4 method for signature 'SpatialPointsDataFrame,SpatialPixelsDataFrame' buffer.dist( observations, predictionDomain, classes, width, parallel = TRUE, ... )
observations | 
 SpatialPointsDataFrame.  | 
predictionDomain | 
 SpatialPixelsDataFrame.  | 
classes | 
 vector of selected points as factors.  | 
width | 
 maximum width for buffer distance.  | 
parallel | 
 optional parallelization setting.  | 
... | 
 optional arguments to pass to   | 
object of class SpatialPixelsDataFrame with distances to points
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., and Gräler, B. (2018) Random Forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 6:e5518. doi: 10.7717/peerj.5518
library(raster)
library(rgdal)
demo(meuse, echo=FALSE)
b <- buffer.dist(meuse["zinc"], meuse.grid[1],
        classes=as.factor(1:nrow(meuse)), parallel=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.