| spc,SpatialPixelsDataFrame-method | R Documentation |
Combines the stats::prcomp method and predicts a list principal components for an object of type "SpatialPixelsDataFrame".
## S4 method for signature 'SpatialPixelsDataFrame' spc(obj, formulaString, scale. = TRUE, silent = FALSE)
obj |
SpatialPixelsDataFrame. |
formulaString |
optional model definition. |
scale. |
scale all numbers. |
silent |
silent output. |
Object of class SpatialComponents. List of grids with generic names PC1,...,PCp, where p is the total number of input grids.
This method assumes that the input covariates are cross-correlated and hence their overlap can be reduced. The input variables are scaled by default and the missing values will be replaced with 0 values to reduce loss of data due to missing pixels.
if(requireNamespace("plotKML", quietly = TRUE)){
library(sp)
library(plotKML)
pal = rev(rainbow(65)[1:48])
data(eberg_grid)
gridded(eberg_grid) <- ~x+y
proj4string(eberg_grid) <- CRS("+init=epsg:31467")
formulaString <- ~ PRMGEO6+DEMSRT6+TWISRT6+TIRAST6
eberg_spc <- spc(eberg_grid, formulaString)
names(eberg_spc@predicted) # 11 components on the end;
## plot maps:
rd = range(eberg_spc@predicted@data[,1], na.rm=TRUE)
sq = seq(rd[1], rd[2], length.out=48)
spplot(eberg_spc@predicted[1:4], at=sq, col.regions=pal)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.