predict.spLearner | R Documentation |
Predict using spLearner at new locations
## S3 method for class 'spLearner' predict( object, predictionLocations, model.error = TRUE, error.type = c("forestError", "weighted.sd", "quantreg", "interval")[1], t.prob = 1/3, w, quantiles = c((1 - 0.682)/2, 1 - (1 - 0.682)/2), n.cores = parallel::detectCores(), what = c("mspe", "bias", "interval"), ... )
object |
of type |
predictionLocations |
|
model.error |
Logical specify if prediction errors should be derived. |
error.type |
Specify how should be the prediction error be derived. |
t.prob |
Threshold probability for significant learners; only applyies for meta-learners based on lm model. |
w |
optional weights vector. |
quantiles |
Lower and upper quantiles for quantreg forest (0.159 and 0.841 for 1 standard deviation). |
n.cores |
Number of cores to use (for parallel computation in ranger). |
what |
A vector of characters indicating what estimates are desired for the quantForestError. |
... |
optional parameters. |
Object of class SpatialPixelsDataFrame
with predictions and model error.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.