#' Unstratified (ordinary) logrank power
#'
#' Computes the power for the unstratified (ordinary) logrank statistic
#' for two group comparison.
#'
#' @param hr hazard ratio
#' @param nevent expected number of events
#' @param alpha two-sided significance level
#' @param rprob randomization probability
#'
#' @details Uses the formula at the bottom of p.317 from Schoenfeld (Biometrika, 1981)
#' where the beta should be 1 - beta.
#' @return \item{power }{logrank power}
#' @references Schoenfeld, D. The asymptotic properties of nonparametric tests for comparing
#' survival distributions. Biometrika. 1981; 68: 316-319.
#' @author Eric Leifer, James Troendle
#' @export lgrkPower
#' @examples
#' hr <- 0.5
#' nevent <- 98
#' lgrkPower(hr, nevent, alpha = 0.05, rprob = 0.5)
#' # $power
#' # [1] 0.9293463
#'
lgrkPower <- function(hr, nevent, alpha = 0.05, rprob = 0.5){
# September 15, 2011
# This function gives the power for two-armed logrank test.
# hr = hazard ratio
# nevent = number of events
# alpha = two-sided significance level
# rprob = treatment arm randomization probability
# with a log hazard ratio of LogHazRat, a two-sided alpha,
# This formula is taken from the bottom of
# p.317 of Schoenfeld (Biometrika, 1981) WHERE
# SCHOENFELD'S BETA SHOULD BE 1 - BETA.
lhr <- log(hr)
critval <- qnorm(1 - alpha/2)
power <- pnorm( sqrt(nevent * rprob * (1 - rprob)) * abs(lhr) - critval)
list(power = power)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.