Description Usage Arguments Value See Also Examples
lFC_in_time
function could be used to plot fold change in time for chosen genes or miRNAs by gene symbol or MIMAT ids respectively.
1 2 | lFC_in_time(genes_to_valid, dane_ranking_z_scores, scale = "linear",
miRNA = FALSE)
|
genes_to_valid |
Character vector with gene symbols or MIMAT ids (for miRNA) which fold change in time should be plotted. |
dane_ranking_z_scores |
A list - output of |
scale |
A character indicating the scale of plot. Could be 'linear' for fold change or 'log' for logarithmic fold change. Default value is 'linear'. |
miRNA |
Logical indicating if plot is created for gene or miRNA ranking. |
Function returns a ggplot object which could be plotted with plot
function as in the examples.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | ## Not run:
##### Create stability ranking for genes
# download data from ArrayExpress database
to_download = c("E-GEOD-67309", "E-MTAB-966")
my_data = downloadAE(to_download, getwd())
# load data
platforms = c("Affymetrix", "Agilent")
loaded_data = load_multi_data(my_data, platforms)
# normalize and annotate
norm_data = multi_norm_and_annot(loaded_data$raw_expression_data, platforms)
# prepare tables for rep_elim function as shown in details
path_to_tables = system.file("inst/extdata", "tables_ex3.rds", package = "FindReference")
my_tables = readRDS(path_to_tables)
# eliminate replications and prepare object for create_ranking function
no_rep_data = rep_elim(norm_data, my_tables)
# create ranking
gene_ranking = create_ranking(no_rep$noRepData, no_rep$uniqSamples, miRNA = FALSE)
# plot fold change in time for some genes
genes_to_plot = c('GAPDH', 'ACTB', 'LYPLA2', 'B2M', 'TP53')
genes_FC_in_time = lFC_in_time(genes_to_plot, gene_ranking)
##### Create stability ranking for miRNAs
# download data from ArrayExpress database
datamiRNA = downloadAE("E-MTAB-5197", "/home/emarek/")
# prepare table as shown in details load_miRNA help page
path_to_table = system.file("inst/extdata", "miRNA_ex1.rds", package = "FindReference")
my_table = readRDS(path_to_table)
# load data
loaded_data = load_miRNA(my_table, datamiRNA[[1]]$path)
# normalize and annotate data
norm_data = norm_and_annot_miRNA(loaded_data)
# eliminate replications and prepare object for create_ranking function
no_rep_data = rep_elim(norm_data, my_table)
# create ranking
miRNA_ranking = create_ranking(no_rep$noRepData, no_rep$uniqSamples, miRNA = TRUE)
# plot fold change in time for the most stable miRNAs
miRNA_to_plot = miRNA_ranking$miRNA_ranking[1:9, 'ID']
genes_FC_in_time = lFC_in_time(miRNA_to_plot, miRNA_ranking, scale = 'linear', miRNA = TRUE)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.