Usage Arguments Value Examples
1 | SCcluster(obj)
|
obj |
The list objective from the function getMarker |
tsnetSNE embeding from Seurat \resseuratClusterCluster results from Seurat \resdbscanClusterCluster results from dbscan
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | data(melanoma)
melanoma1=as.matrix(melanoma[,2:dim(melanoma)[2]])
row.names(melanoma1)=melanoma[,1]
res=ModalFilter(data=melanoma1,geneK=10,cellK=10)
res=GeneFilter(obj=res)
res=getMarker(obj=res,MNN=200,MNNIndex=20)
res=SCcluster(obj=res)
## The function is currently defined as
function (obj)
{
data=obj$rawdata
gene=row.names(data)
gene=unique(gene)
index=match(gene,row.names(data))
data=data[index,]
marker = obj$marker
pbmc <- CreateSeuratObject(raw.data = data, min.cells = 3,
min.genes = 200, project = "project")
pbmc <- NormalizeData(object = pbmc, normalization.method = "LogNormalize",
scale.factor = 10000)
pbmc <- FindVariableGenes(object = pbmc, mean.function = ExpMean,
dispersion.function = LogVMR, x.low.cutoff = 0.0125,
x.high.cutoff = 3, y.cutoff = 0.5)
pbmc <- ScaleData(object = pbmc)
pbmc <- RunPCA(object = pbmc, pc.genes = gene, do.print = TRUE,
pcs.print = 1:5, genes.print = 5)
pbmc <- FindClusters(object = pbmc, reduction.type = "pca",
dims.use = 1:8, resolution = 0.6, print.output = 0, save.SNN = TRUE,
force.recalc = TRUE)
pbmc <- RunTSNE(object = pbmc, dims.use = 1:15, do.fast = TRUE)
TSNE = pbmc@dr$tsne@cell.embeddings
seuratCluster = pbmc@ident
dbscanCluster = dbscan(TSNE, eps = 1.2, minPts = 15)$cluster
names(dbscanCluster) = row.names(TSNE)
obj$tsne = TSNE
obj$seuratCluster = seuratCluster
obj$dbscanCluster = dbscanCluster
return(obj)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.