1 | HeatmapCell(obj, top)
|
obj |
The list objective from the function getClusterGene |
top |
The number of gene which showed top cluster specificity |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | data(melanoma)
melanoma1=as.matrix(melanoma[,2:dim(melanoma)[2]])
row.names(melanoma1)=melanoma[,1]
res=ModalFilter(data=melanoma1,geneK=10,cellK=10)
res=GeneFilter(obj=res)
res=getMarker(obj=res,MNN=200,MNNIndex=20)
res=SCcluster(obj=res)
res=getClusterGene(obj=res,method="Seurat")
HeatmapCell(obj=res,10)
## The function is currently defined as
function (obj, top)
{
feature = obj$clustergene
topmarker = as.data.frame(feature %>% group_by(clusts) %>%
top_n(top, auroc))
topmarker = topmarker[order(topmarker$clusts), ]
method = obj$method
if (method == "Seurat") {
cluster = obj$seuratCluster
cluster = cluster[order(cluster)]
}
else if (method == "dbscan") {
cluster = obj$dbscanCluster
cluster = cluster[order(cluster)]
}
clustertype = unique(cluster)
data = obj$rawdata[topmarker$gene, names(cluster)]
clustercount = table(cluster)
gapIndex = c()
for (i in 2:(length(clustertype) - 1)) {
gapIndex = c(gapIndex, sum(clustercount[1:i]))
}
pheatmap(data, cluster_cols = F, cluster_rows = F, show_colnames = F,
gaps_col = gapIndex)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.