Consensus_Cluster_Analysis: Consensus_Cluster_Analysis

Description Usage Arguments Details Value Examples

View source: R/CA_Consensus_Cluster_Analysis.R

Description

Consensus clustering result of multi-clustering algorithms.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
Consensus_Cluster_Analysis(
  Exp,
  k,
  methods = "ALL",
  dist.method = "euclidean",
  consensus.method = "average",
  scale = TRUE,
  saveplot = FALSE,
  plot.dir.suffix = NULL,
  ConsensusClusterPlus.reps = 100
)

clustering.methods()

Consensus_Cluster_conMethod(res.con, consensus.method)

Arguments

Exp

data.frame or matrix with rownames represent samples, colnames represent features like proteins or genes.

k

number of clusters

methods

Charactor vector. Default "ALL" will perform all 20 clustering methods.

dist.method

Method for calculating dissimilarity. Default "euclidean", can be any methods supported by dist()

consensus.method

Method used for the final consensus cluster by hieraichical clustering. Default are set to "average". Alternatively, "complete" may get a diferent view of result, which you should try. It Can be set as any method supported by hclust.

scale

Logical value, whether to scale your input data. Default: TRUE.

saveplot

under developing

plot.dir.suffix

under developing

ConsensusClusterPlus.reps

Integer value, used by consensusClusterPlus.

res.con

result of Consensus_Cluster_Analysis().

Details

Consensus clustering result of multi-clustering algorithms.

Value

Consensus_Cluster_Analysis returns res.con–one list contains all cluster results.

clustering.methods returns all supported clutersing algorithms.

Consensus_Cluster_conMethod returns one new res.con with the new consensus.method.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
#Use ALL supported clustering methods
res.con <- Consensus_Cluster_Analysis(iris[-5], 3, methods = "ALL")
#Use a subset of clustering methods. Note: not avaliable now.
#Under development: res.con <- Consensus_Cluster_Analysis(iris[-5], 3, methods = c("kmeans", "pam"))

#plot result:
plot_consensus_cluster.heatmap(res.con)
plot_consensus_cluster.pca(res.con)

#list all supported clustering algorithms:
clustering.methods()
all.methods <- unlist(clustering.methods)

#Change consensus cluster method:
res.con <- Consensus_Cluster_conMethod(res.con, "complete")

FanqianYin/omicstoolkits documentation built on Jan. 3, 2022, 5:57 p.m.