#' Linear Gradient Descend (2)
#'
#' This function is the slower version of \code{\link{linear_gd_optim}} given that it makes use of the \code{\link{grad}} function contained in the package "numDeriv".
#'
#' @param b_pre vector of initial parameters
#' @param X Covariates Matrix: each column contains observations for each covariate.
#' @param y Response variable observations
#' @param tol Tolerance level for the optimization process, the default is 0.001.
#' @param maxit Maximum iterations number. Default is 1000.
#' @param stepsize The value for the stepsize in the equation of the gradient descend. Default is 0.001.
#'
#' @return A list containing the fitted values for the beta vector and the number of iterations performed.
#'
#' @examples
#' set.seed(8675309)
#' n = 1000
#' x1 = rnorm(n)
#' x2 = rnorm(n)
#' y = 1 + .5*x1 + .2*x2 + rnorm(n)
#' X=cbind(x1,x2)
#' b_pre=c(0,0,0)
#' linear_gd_optim(b_pre,X,y)
#' @export
linear_gd_optim2 <- function(b_pre, # beta(0)
X, # data predictors
y, # response variable
tol=1e-3, # tolerance
maxit=1000, # max iteration, not to run forever
stepsize=1e-3#, # stepsize parameter
#verbose=F
) {
library(numDeriv)
L=function(b,X,y){
return(mean((X%*%b-y)^2))
}
X=cbind(1,X)
b_post=b_pre-grad(L,b_pre,X=X,y=y)*stepsize
diff <- tol + 1
iter <- 0
while (diff > tol & iter <= maxit) {
b_pre=b_post
b_post=b_post-grad(L,b_post,X=X,y=y)*stepsize
iter=iter+1
diff=max(abs(b_pre-b_post))
}
return(list(param=b_post,iter=iter))
}
#Roxygen2:
#1) scrivi i commenti sopra la function con #'@...
#2) esegui i seguenti:
# roxygen2::roxygenise()
# devtools::document()
# Ctrl + Shift + D
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.