context("RiboMethSeq")
# .get_heatmap_data
test_that("RiboMethSeq:",{
# weight validation
expect_false(RNAmodR.RiboMethSeq:::.valid_rms_weights(c(1,1,1)))
expect_true(RNAmodR.RiboMethSeq:::.valid_rms_weights(c(1,0,1)))
expect_false(RNAmodR.RiboMethSeq:::.valid_rms_weights(c(1,1,0,1)))
expect_false(RNAmodR.RiboMethSeq:::.valid_rms_weights(c(1,0)))
expect_false(RNAmodR.RiboMethSeq:::.valid_rms_weights(c(1)))
expect_true(RNAmodR.RiboMethSeq:::.valid_rms_weights(c(1,1,0,1,1)))
# argument normalization
input <- list()
actual <- RNAmodR.RiboMethSeq:::.norm_rms_args(input)
expect_type(actual,"list")
expect_named(actual,c("minCoverage",
"minReplicate",
"find.mod",
"maxLength",
"minSignal",
"flankingRegion",
"minScoreA",
"minScoreB",
"minScoreRMS",
"minScoreMean",
"flankingRegionMean",
"weights",
"scoreOperator"))
expect_error(RNAmodR.RiboMethSeq:::.norm_rms_args(list(weights = c(1,1,0,1))))
expect_error(RNAmodR.RiboMethSeq:::.norm_rms_args(list(minSignal = 10)))
expect_equal(RNAmodR.RiboMethSeq:::.norm_rms_args(list(minSignal = 10L)),
actual)
expect_error(RNAmodR.RiboMethSeq:::.norm_rms_args(list(minScoreA = 2L)))
expect_equal(RNAmodR.RiboMethSeq:::.norm_rms_args(list(minScoreA = 0.6)),
actual)
expect_error(RNAmodR.RiboMethSeq:::.norm_rms_args(list(flankingRegion = 2.5)))
expect_equal(RNAmodR.RiboMethSeq:::.norm_rms_args(list(flankingRegion = 6L)),
actual)
expect_error(RNAmodR.RiboMethSeq:::.norm_rms_args(list(minScoreB = "a")))
expect_equal(RNAmodR.RiboMethSeq:::.norm_rms_args(list(minScoreB = 3.6)),
actual)
expect_error(RNAmodR.RiboMethSeq:::.norm_rms_args(list(minScoreRMS = 2L)))
expect_equal(RNAmodR.RiboMethSeq:::.norm_rms_args(list(minScoreRMS = 0.75)),
actual)
expect_error(RNAmodR.RiboMethSeq:::.norm_rms_args(list(scoreOperator = 2L)))
expect_equal(RNAmodR.RiboMethSeq:::.norm_rms_args(list(scoreOperator = "&")),
actual)
data <- data.frame(ends = "1", scoreRMS = "a", scoreA = "b", scoreB = "c",
scoreMean = "d",
stringsAsFactors = FALSE)
actual <- RNAmodR.RiboMethSeq:::.get_rms_scores(data)
expect_type(actual,"list")
expect_named(actual,c("score","scoreA","scoreB","scoreMean"))
# settings
data("msrms", package = "RNAmodR.RiboMethSeq")
expect_type(settings(msrms),"list")
expect_type(settings(msrms[[1]]),"list")
expect_error(settings(msrms[[1]]) <- 1,
"'value' has to be a named.")
expect_error(settings(msrms[[1]]) <- c(1),
"'value' has to be a named.")
# settings(msrms[[1]]) <- c(minCoverage = 11L)
# expect_equal(settings(msrms[[1]])$minCoverage, 11L)
# # aggregate Data
expect_s4_class(sequenceData(msrms[[1]]), "ProtectedEndSequenceData")
mod <- aggregate(sequenceData(msrms[[1]]), condition = "Treated")
expect_named(mod)
expect_s4_class(mod,"CompressedSplitDFrameList")
expect_equal(colnames(mod[[1L]]),c("means.treated","sds.treated"))
expect_equal(mod[[1L]][1,1], 14152)
#
actual <- RNAmodR.RiboMethSeq:::.aggregate_rms(msrms[[1]])
expect_named(actual)
expect_s4_class(actual,"CompressedSplitDFrameList")
expect_equivalent(actual[[1]][1,3], 0)
expect_equivalent(actual[[1]][2,3], 0.75416916223702946)
expect_equal(colnames(actual[[1]]),c("ends","scoreA","scoreB","scoreRMS",
"scoreMean"))
# findMod
actual <- findMod(msrms[[1]])
expect_s4_class(actual,"GRanges")
expect_length(actual,0)
expect_equal(dim(mcols(actual)),c(0,0))
actual <- findMod(msrms[[2]])
expect_s4_class(actual,"GRanges")
expect_length(actual,1)
expect_equal(colnames(mcols(actual)),c("mod","source","type","score",
"scoreA","scoreB","scoreMean",
"Parent"))
expect_equal(unique(mcols(actual)$mod),c("Um"))
# show
# expect_output(expect_warning(show(msrms),
# "Settings were changed after data aggregation or"))
# expect_warning(modifications(msrms),
# "Settings were changed after data aggregation or")
expect_true(all(modifications(msrms)[[1]] == actual))
# plotting
expect_error(RNAmodR.RiboMethSeq:::.norm_viz_mod_rms_args(list(), "1"),
"Type '1' is not valid")
actual <- RNAmodR.RiboMethSeq:::.norm_viz_mod_rms_args(list(), "scoreA")
expect_type(actual,"list")
expect_named(actual,c("type","colour"))
expect_equal(actual[["type"]],"scoreA")
actual <- RNAmodR.RiboMethSeq:::.norm_viz_mod_rms_args(list(), "scoreB")
expect_equal(actual[["type"]],"scoreB")
actual <- RNAmodR.RiboMethSeq:::.norm_viz_mod_rms_args(list(), "ends")
expect_equal(actual[["type"]],"ends")
# getDataTrack
expect_error(getDataTrack(msrms[[1]]),
'argument "type" is missing, with no default')
expect_error(getDataTrack(msrms[[1]],type="score"),
"Type 'score' is not valid")
expect_error(getDataTrack(msrms[[1]],type="scoreB"),
'argument "name" is missing')
actual <- getDataTrack(msrms[[1]],name="1",type="scoreB")
expect_type(actual,"list")
expect_named(actual,"scoreB")
expect_s4_class(actual[[1]],"DataTrack")
# plotData
actual <- plotData(msrms[[1]],name="1",type="scoreB")
expect_type(actual,"list")
expect_named(actual,c("Score B","SequenceTrack","titles"))
expect_s4_class(actual[[1]],"DataTrack")
expect_s4_class(actual[[2]],"SequenceRNAStringSetTrack")
expect_s4_class(actual[[3]],"ImageMap")
actual <- plotData(msrms,name="1",type="scoreB")
expect_type(actual,"list")
expect_s4_class(actual[[1]],"DataTrack")
expect_s4_class(actual[[2]],"DataTrack")
expect_s4_class(actual[[3]],"SequenceRNAStringSetTrack")
expect_s4_class(actual[[4]],"ImageMap")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.