library(tidyverse)
me <- cvpiaHabitat::modeling_exist
me %>% glimpse()
me$Region %>% unique
# upper mid sac----------------------
me %>%
filter(Region == "Upper-mid Sacramento River") %>%
select(Watershed, starts_with('FR'), Region) %>%
filter(FR_fry, FR_juv)
ba <- cvpiaHabitat::battle_creek_instream %>%
mutate(ratio = FR_fry_wua/FR_juv_wua) %>%
select(flow_cfs, ratio) %>%
mutate(creek = 'battle')
bu <- cvpiaHabitat::butte_creek_instream %>%
mutate(ratio = FR_fry_wua/FR_juv_wua) %>%
select(flow_cfs, ratio) %>%
filter(!is.na(ratio)) %>%
mutate(creek = 'butte')
cl <- cvpiaHabitat::clear_creek_instream %>%
mutate(ratio = FR_fry_wua/FR_juv_wua) %>%
select(flow_cfs, ratio) %>%
mutate(creek = 'clear')
cot <- cvpiaHabitat::cottonwood_creek_instream %>%
mutate(ratio = FR_fry_wua/FR_juv_wua) %>%
select(flow_cfs, ratio) %>%
filter(!is.na(ratio), flow_cfs < 1000) %>%
mutate(creek = 'cottonwood')
cow <- cvpiaHabitat::cow_creek_instream %>%
mutate(ratio = FR_fry_wua/FR_juv_wua) %>%
select(flow_cfs, ratio) %>%
mutate(creek = 'cow')
# use region approximation for big chico
flows_cfs <- cl$flow_cfs
fry <- purrr::map_dbl(flows_cfs, set_instream_habitat, watershed = 'Big Chico Creek', species = 'fr', life_stage = 'fry')
juv <- purrr::map_dbl(flows_cfs, set_instream_habitat, watershed = 'Big Chico Creek', species = 'fr', life_stage = 'juv')
ratio <- fry/juv
bc <- tibble(flow_cfs = flows_cfs, ratio = ratio, creek = 'big chico*')
bind_rows(ba, bu, cl, cot, cow, bc) %>%
ggplot(aes(x = flow_cfs, y = ratio, color = creek)) +
geom_line() +
theme_minimal() +
geom_hline(yintercept = 1) +
labs(y = 'ratio fryWUA to juvWUA', x = 'flow (cfs)', caption = "*calculated using regional approximation")
# south delta------------
me %>%
filter(Region == "South Delta") %>%
select(Watershed, starts_with('FR'), Region) %>%
filter(FR_juv)
cal <- cvpiaHabitat::calaveras_river_instream %>%
mutate(ratio = FR_fry_wua/FR_juv_wua) %>%
select(flow_cfs, ratio) %>%
mutate(river = 'calaveras')
cvpiaHabitat::mokelumne_river_instream
moke_fry <- approxfun(x = cvpiaHabitat::mokelumne_river_instream$flow_cfs,
y = cvpiaHabitat::mokelumne_river_instream$FR_fry_wua, rule = 2)
moke_juv <- approxfun(x = cvpiaHabitat::mokelumne_river_instream$flow_cfs,
y = cvpiaHabitat::mokelumne_river_instream$FR_juv_wua, rule = 2)
ratio <- moke_fry(cvpiaHabitat::mokelumne_river_instream$flow_cfs) / moke_juv(cvpiaHabitat::mokelumne_river_instream$flow_cfs)
flows_cfs <- cvpiaHabitat::mokelumne_river_instream$flow_cfs
moke <- tibble(flow_cfs = flows_cfs, ratio = ratio, river = 'moke') %>%
filter(flows_cfs < 500)
# region approximation is doing a good job, no need to scale fry or juv not a
# consistant ratio fry/juv to use as scaling factor for tribs with only juv
# modeled to estimate fry value. just use juv for fry
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.