Description Usage Arguments Value Examples
Train a time series random forest
1 | train_tsrf(tsfeats, tslabels, tsid)
|
tsfeats |
time series features (data.frame) as generated by
|
tsid |
name of id column(s) in |
labels |
time series labels (vector) |
train object, as generated by train
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | # Generate 10 time series of two different classes, each 100 points long
tsnum <- 10
tslbl <- factor(rep(c("A", "B"), each = tsnum))
tslen <- 100
Aval <- replicate(tsnum, rnorm(tslen))
Bval <- replicate(tsnum, c(rnorm(tslen / 2), cumsum(rnorm(tslen / 2, 0.1))))
tsdat <- data.frame(
id = rep(1:(2 * tsnum), each = tslen),
val = c(as.numeric(Aval), as.numeric(Bval))
)
# Plot time series
plot(seq(tslen), tsdat$val[tsdat$id == 1],
type = "l", col = "#FF000088", ylim = range(tsdat$val))
for (i in 2:(tsnum * 2)) {
lines(seq(tslen), tsdat$val[tsdat$id == i],
col = if (i <= tsnum) "#FF000088" else "#0000FF88")
}
# Extract features
tsints <- sample_intervals(tslen)
tsfeat <- extract_features(tsdat, "id", tsints)
# Split data
train_index <- sample(seq(nrow(tsfeat)), 0.9 * nrow(tsfeat))
train_feat <- tsfeat[train_index, ]
test_feat <- tsfeat[-train_index, ]
train_lbl <- tslbl[train_index]
test_lbl <- tslbl[-train_index]
# Train model
tsrf <- train_tsrf(train_feat, train_lbl, "id")
# Test predictions
pred_feat <- predict(tsrf, test_feat)
caret::confusionMatrix(pred_feat, test_lbl)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.