R/GSEA.EnrichmentScore.R

Defines functions GSEA.EnrichmentScore

Documented in GSEA.EnrichmentScore

#' Computes the enrichment score of a gene set
#'
#' `GSEA.EnrichmentScore` computes the weighted GSEA score of gene.set in gene.list
#'
#' Internal `GSEA` function.
#' Computes the weighted GSEA score of gene.set in gene.list.  The weighted score
#' type is the exponent of the correlation weight: 0 (unweighted =
#' Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted). When the score type
#' is 1 or 2 it is necessary to input the correlation vector with the values in
#' the same order as in the gene list.  Inputs: gene.list: The ordered gene list
#' (e.g. integers indicating the original position in the input dataset) gene.set:
#' A gene set (e.g. integers indicating the location of those genes in the input
#' dataset) weighted.score.type: Type of score: weight: 0 (unweighted =
#' Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted) correl.vector: A
#' vector with the coorelations (e.g. signal to noise scores) corresponding to the
#' genes in the gene list Outputs: ES: Enrichment score (real number between -1
#' and +1) arg.ES: Location in gene.list where the peak running enrichment occurs
#' (peak of the 'mountain') RES: Numerical vector containing the running
#' enrichment score for all locations in the gene list tag.indicator: Binary
#' vector indicating the location of the gene sets (1's) in the gene list
#'
#' @keywords internal
#'

GSEA.EnrichmentScore <-
function(gene.list, gene.set, weighted.score.type = 1, correl.vector = NULL) {

 tag.indicator <- sign(match(gene.list, gene.set, nomatch = 0))  # notice that the sign is 0 (no tag) or 1 (tag)
 no.tag.indicator <- 1 - tag.indicator
 N <- length(gene.list)
 Nh <- length(gene.set)
 Nm <- N - Nh
 if (weighted.score.type == 0) {
  correl.vector <- rep(1, N)
 }
 alpha <- weighted.score.type
 correl.vector <- abs(correl.vector^alpha)
 sum.correl.tag <- sum(correl.vector[tag.indicator == 1])
 norm.tag <- 1/sum.correl.tag
 norm.no.tag <- 1/Nm
 RES <- cumsum(tag.indicator * correl.vector * norm.tag - no.tag.indicator * norm.no.tag)
 max.ES <- max(RES)
 min.ES <- min(RES)
 if (max.ES > -min.ES) {
  # ES <- max.ES
  ES <- signif(max.ES, digits = 5)
  arg.ES <- which.max(RES)
 } else {
  # ES <- min.ES
  ES <- signif(min.ES, digits = 5)
  arg.ES <- which.min(RES)
 }
 return(list(ES = ES, arg.ES = arg.ES, RES = RES, indicator = tag.indicator))
}
GSEA-MSigDB/GSEA_R documentation built on Nov. 30, 2021, 4:50 a.m.