R/wd_data_plot.R

Defines functions wd_data_plot

Documented in wd_data_plot

#' data data and plot for one or more country and a variable from worldbank
#' @param var: variable code you can get it using WDIsearch("var"). The common variables are (1)"SL.UEM.TOTL.ZS"(unemployment rate), (2)"FP.CPI.TOTL.ZG" (inflation rate), (3)"NY.GDP.DEFL.KD.ZG"(Inflation, GDP deflator (annual)" ),(4)"GDPPCKN" --"Real GDP per Capita (real local currency units, various base years)",  (5)"NY.GDP.MKTP.CD"- "GDP (current US$)" (6)"NY.GDP.MKTP.CN"-  "GDP (current LCU)", (7)"NY.GDP.PCAP.CD" - "GDP per capita (current US$)" (8), (9)"NY.GDP.PCAP.KN" - "GDP per capita (constant LCU)", (10)"NYGDPMKTPCN"-"GDP, current LCU, millions"
#' @param varname: var name you name it
#' @param country: 2 iso country code
#' @param startyear: start year like 1960
#' @param endyear:  end year
#' @return a list: data, p=plot
#' @keywords worldbank data
#' @export
#' @examples
#' wd_data_plot("NY.GDP.MKTP.CD","GDP",c("CN","IN","US"),1960,2014)

wd_data_plot <- function(var="NY.GDP.MKTP.CD",varname="GDP",country="CN",startyear=1960, endyear=2014){
	#library(dplyr)
	library(ggplot2)

	library(WDI)

	xdata = WDI(country=country, indicator=var, start=startyear, end=endyear)

	name = names(xdata)
	names(xdata) =  c('c','country',varname,'year')
	head = head(xdata)
	p=ggplot(data = xdata,aes_string(x='year',y=varname))+geom_line(aes(colour = country))+scale_x_continuous(breaks=seq(1962,2014,4))
	return(list(name=name,head = head,data=xdata,p=p))
}
Gabegit/gmdata documentation built on May 6, 2019, 5:32 p.m.