Description Usage Arguments Details Examples
This function implements and summarizes multiple simulations across a designated range of parameter values
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | INAscene(
nreals,
ntimesteps,
doplot = F,
outputvol = "more",
readgeocoords,
geocoords = NA,
numnodes = NA,
xrange = NA,
yrange = NA,
randgeo = NA,
readinitinfo,
initinfo = NA,
initinfo.norp = NA,
initinfo.n = NA,
initinfo.p = NA,
initinfo.dist = NA,
readinitbio,
initbio = NA,
initbio.norp = NA,
initbio.n = NA,
initbio.p = NA,
initbio.dist = NA,
readseam,
seam = NA,
seamdist = NA,
seamrandp = NA,
seampla = NA,
seamplb = NA,
readbpam,
bpam = NA,
bpamdist = NA,
bpamrandp = NA,
bpampla = NA,
bpamplb = NA,
readprobadoptvec,
probadoptvec = NA,
probadoptmean = NA,
probadoptsd = NA,
readprobestabvec,
probestabvec = NA,
probestabmean = NA,
probestabsd = NA,
maneffdir = NA,
maneffmean = NA,
maneffsd = NA,
usethreshman,
maneffthresh = NA,
sampeffort = NA
)
|
nreals |
number of realizations to be evaluated |
ntimesteps |
number of time steps to be evaluated |
doplot |
if true, plots of resulting presence of information and bioentity are generated |
outputvol |
output volume, where outputvol='less' excludes the list element $multdetails from output, and outputvol='more' includes it in output. $multdetails becomes large quickly for many realizations for large matrices so outputvol='less' would be desirable for extensive analyses |
readgeocoords |
if T, read in geocoords - otherwise, generate it in each realization |
geocoords |
matrix of x,y coordinates of nodes |
numnodes |
(genlocs:nodenum) the number of nodes, can be a vector of different numbers of nodes for scenario comparisons |
xrange |
(genlocs:extx) range of x coordinates, e.g., c(0,50) |
yrange |
(genlocs:exty) range of y coordinates, e.g., c(0,20) |
randgeo |
(genlocs:rand) if TRUE then locations are randomly generated (the only location generation option for the moment) |
readinitinfo |
info (setup2) if T, the initial values for the vector of starting locations for the presence of information are read in rather than generated |
initinfo |
info (setup2) the vector of initial values read in if readinitinfo == T, a vector with lenth equal to the number of nodes and entries 1s or 0s with 1s indicating the initial presence of information |
initinfo.norp |
info (initvals:numorpropi) 'num' indicates initial number for presence, 'prop' indicates initial proportion |
initinfo.n |
info (initvals:numiniti) the number of initial locations for presence |
initinfo.p |
info (initvals:propiniti) the proportion of initial locations for presence |
initinfo.dist |
info (initvals:loctypei) the type of locations where initial presence occurs: 'random' indicates all equally likely, 'upedge' indicates that nodes closest to the upper edge have presence, 'rightedge' indicates that nodes closest to the right edge have presence |
readinitbio |
bio (setup2) if T, the initial values for the vector of starting locations for the presence of the bioentity are read in rather than generated |
initbio |
bio (setup2) the vector of initial values read in if readinitbio.s == T, a vector with lenth equal to the number of nodes and entries 1s or 0s with 1s indicating the initial presence of the bioentity |
initbio.norp |
estab (initvals:numorprope/b) 'num' indicates initial number for presence, 'prop' indicates initial proportion |
initbio.n |
estab (initvals:numinite/b) the number of initial locations for presence |
initbio.p |
estab (initvals:propinite/b) the proportion of initial locations for presence |
initbio.dist |
estab (initvals:loctypee/b) the type of locations where initial presence occurs: 'random' indicates all equally likely, 'upedge' indicates that nodes closest to the upper edge have presence, 'rightedge' indicates that nodes closest to the right edge have presence |
readseam |
if T, the socioeconomic network adjacency matrix is read in rather than being generated from the outset |
seam |
socioeconnomic network adjacency matrix, read in if readseam=T (assumed to be structured so that rows are sources and columns are sinks) |
seamdist |
com (genmovnet) the function of distance used to estimate movement probability - 'random' (not related to distance) or 'powerlaw' |
seamrandp |
(genmovnet) probability of link existence in random network generated for the socioeconomic network |
seampla |
com (genmovnet) power law parameter a in ad^(-b) |
seamplb |
com (genmovnet) power law parameter b in ad^(-b) |
readbpam |
if T, the biophysical network adjacency matrix, describing dispersal likelihoods, is read in rather than being generated from the outset |
bpam |
biophysical adjacency matrix, read in if readbpam=T (assumed to be structured so that rows are sources and columns are sinks) |
bpamdist |
disp (genmovnet) the function of distance used to estimate movement probability - 'random' (not related to distance) or 'powerlaw' |
bpamrandp |
(genmovnet) if bpamdist='random', the probability a link exists in the biophysical network adjacency matrix |
bpampla |
disp (genmovnet) power law parameter a in ad^(-b) |
bpamplb |
disp (genmovnet) power law parameter b in ad^(-b) |
readprobadoptvec |
if T, read in a vector of probabilities of adoption for each node in socioeconomic network - if F, generate this vector |
probadoptvec |
vector of probabilities of adoption for each node in socioeconomic network, read in if readprobadoptvec=T |
probadoptmean |
(makedec) mean probability of adopting management if informed |
probadoptsd |
(makedec) sd in truncated normal distribution of probability of adoption |
readprobestabvec |
if T, read in a vector of probabilities of establishment for each node in biophysical network - if F, generate this vector |
probestabvec |
vector of probabilities of establishment for each node in biophysical network, read in if readprobestabvec=T |
probestabmean |
(estab) mean probability of establishment (new or CONTINUED) in absence of management |
probestabsd |
(estab) sd of probability of establishment in absence of management in truncated normal distribution |
maneffdir |
if maneffdir='decrease_estab', the management reduces the probability of establishment; if maneffdir='increase_estab', the management reduces the probability that establishment does NOT occur |
maneffmean |
(estinfo, estab) the underlying mean change in establishment probability (as a proportion) resulting from management technology |
maneffsd |
(estinfo, estab) the standard deviation of the management technology effect |
usethreshman |
() if T, the threshold for management is used, so that information is never present anywhere unless the management effect estimate exceeds the threshold |
maneffthresh |
(estinfo) the threshold effect size for communicating about management |
sampeffort |
(estinfo) the sampling effort, where increasing sampling effort results in a more precise estimate of the management effect size |
Updated 2020-10-06
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | j25.readgeocoords <- INAscene(nreals=3, ntimesteps=3, doplot=F, readgeocoords=T, geocoords=matrix(c(1,1, 1,2, 1,3, 2,1, 2,2, 2,3),byrow=T,ncol=2), numnodes=NA, xrange=NA, yrange=NA, randgeo=F, readinitinfo=T, initinfo=c(1,1,1,0,0,0), initinfo.norp=NA, initinfo.n=NA, initinfo.p=NA, initinfo.dist=NA, readinitbio=T, initbio=c(0,0,0,1,1,1), initbio.norp=NA, initbio.n=NA, initbio.p=NA, initbio.dist=NA, readseam=F, seam=NA, seamdist='random', seamrandp=c(0.01,0.05,0.1,0.5), seampla=NA, seamplb=NA, readbpam=F, bpam=NA, bpamdist='random', bpamrandp=0.1, bpampla=NA, bpamplb=NA, readprobadoptvec=F, probadoptvec=NA, probadoptmean=0.1, probadoptsd=0.1, readprobestabvec=F, probestabvec=NA, probestabmean=0.1, probestabsd=0.1, maneffdir='decrease_estab', maneffmean=0.5, maneffsd=0.1, usethreshman=F, maneffthresh=NA, sampeffort=NA)
j25.baseline <- INAscene(nreals=3, ntimesteps=3, doplot=F, readgeocoords=F, geocoords=NA, numnodes=50, xrange=c(0,10), yrange=c(0,20), randgeo=T, readinitinfo=F, initinfo=NA, initinfo.norp='num', initinfo.n=5, initinfo.p=NA, initinfo.dist='random', readinitbio=F, initbio=NA, initbio.norp='num', initbio.n=5, initbio.p=NA, initbio.dist='random', readseam=F, seam=NA, seamdist='powerlaw', seamrandp=NA, seampla=1, seamplb=0.5, readbpam=F, bpam=NA, bpamdist='powerlaw', bpamrandp=NA, bpampla=1, bpamplb=0.5, readprobadoptvec=F, probadoptvec=NA, probadoptmean=0.5, probadoptsd=0.2, readprobestabvec=F, probestabvec=NA, probestabmean=0.5, probestabsd=0.2, maneffdir='decrease_estab', maneffmean=0.5, maneffsd=0.2, usethreshman=T, maneffthresh=0.5, sampeffort=2)
j25.baseline$multout
j25.readseam <- INAscene(nreals=3, ntimesteps=3, doplot=F, readgeocoords=T, geocoords=matrix(c(1,1, 1,2, 1,3, 2,1, 2,2, 2,3),byrow=T,ncol=2), numnodes=NA, xrange=NA, yrange=NA, randgeo=F, readinitinfo=T, initinfo=c(1,1,1,0,0,0), initinfo.norp=NA, initinfo.n=NA, initinfo.p=NA, initinfo.dist=NA, readinitbio=T, initbio=c(0,0,0,1,1,1), initbio.norp=NA, initbio.n=NA, initbio.p=NA, initbio.dist=NA, readseam=T, seam=matrix(c(1,0,0,0,1,0, 0,1,0,0,1,0, 0,0,1,0,1,0, 0,1,0,1,0,0, 0,0,0,0,1,1, 0,1,0,0,0,1),byrow=T,nrow=6), seamdist=NA, seamrandp=NA, seampla=NA, seamplb=NA, readbpam=F, bpam=NA, bpamdist='random', bpamrandp=0.1, bpampla=NA, bpamplb=NA, readprobadoptvec=F, probadoptvec=NA, probadoptmean=0.1, probadoptsd=0.1, readprobestabvec=F, probestabvec=NA, probestabmean=0.1, probestabsd=0.1, maneffdir='decrease_estab', maneffmean=0.5, maneffsd=0.1, usethreshman=F, maneffthresh=NA, sampeffort=NA)
sens.probadoptmean <- INAscene(nreals=15, ntimesteps=3, doplot=F, readgeocoords=F, geocoords=NA, numnodes=50, xrange=c(0,10), yrange=c(0,20), randgeo=T, readinitinfo=F, initinfo=NA, initinfo.norp='num', initinfo.n=5, initinfo.p=NA, initinfo.dist='random', readinitbio=F, initbio=NA, initbio.norp='num', initbio.n=5, initbio.p=NA, initbio.dist='random', readseam=F, seam=NA, seamdist='powerlaw', seamrandp=NA, seampla=1, seamplb=0.5, readbpam=F, bpam=NA, bpamdist='powerlaw', bpamrandp=NA, bpampla=1, bpamplb=0.5, readprobadoptvec=F, probadoptvec=NA, probadoptmean=seq(0,1,0.1), probadoptsd=0.2, readprobestabvec=F, probestabvec=NA, probestabmean=0.5, probestabsd=0.2, maneffdir='decrease_estab', maneffmean=0.9, maneffsd=0.2, usethreshman=T, maneffthresh=0.3, sampeffort=2)
jt <- sens.probadoptmean$multout
plot(jt$probadoptmean, jt$mestab, xlab='Mean probability of adopting technology if informed', ylab='Proportion nodes with bioentity', xlim=c(0,1), ylim=c(0,1))
plot(jt$probadoptmean, jt$mdec, xlab='Mean probability of adopting technology if informed', ylab='Proportion nodes with technology adoption', xlim=c(0,1), ylim=c(0,1))
sens.seamplb <- INAscene(nreals=15, ntimesteps=3, doplot=F, readgeocoords=F, geocoords=NA, numnodes=50, xrange=c(0,50), yrange=c(0,50), randgeo=T, readinitinfo=F, initinfo=NA, initinfo.norp='num', initinfo.n=5, initinfo.p=NA, initinfo.dist='random', readinitbio=F, initbio=NA, initbio.norp='num', initbio.n=5, initbio.p=NA, initbio.dist='random', readseam=F, seam=NA, seamdist='powerlaw', seamrandp=NA, seampla=1, seamplb=seq(0,2,0.1), readbpam=F, bpam=NA, bpamdist='powerlaw', bpamrandp=NA, bpampla=1, bpamplb=0.5, readprobadoptvec=F, probadoptvec=NA, probadoptmean=0.7, probadoptsd=0.2, readprobestabvec=F, probestabvec=NA, probestabmean=0.5, probestabsd=0.2, maneffdir='decrease_estab', maneffmean=0.9, maneffsd=0.2, usethreshman=T, maneffthresh=0.3, sampeffort=2)
jt2 <- sens.seamplb$multout
plot(jt2$seamplb, jt2$mestab, xlab='Power law parameter b in ad^(-b) for communication links', ylab='Proportion nodes with bioentity', xlim=c(0,2), ylim=c(0,1))
plot(jt2$seamplb, jt2$mdec, xlab='Power law parameter b in ad^(-b) for communication links', ylab='Proportion nodes with technology adoption', xlim=c(0,2), ylim=c(0,1))
plot(jt2$seamplb, jt2$mcom, xlab='Power law parameter b in ad^(-b) for communication links', ylab='Proportion nodes with information about technology', xlim=c(0,2), ylim=c(0,1))
j25.seamrandp <- INAscene(nreals=3, ntimesteps=3, doplot=F, readgeocoords=F, geocoords=NA, numnodes=50, xrange=c(0,10), yrange=c(0,20), randgeo=T, readinitinfo=F, initinfo=NA, initinfo.norp='num', initinfo.n=5, initinfo.p=NA, initinfo.dist='random', readinitbio=F, initbio=NA, initbio.norp='num', initbio.n=5, initbio.p=NA, initbio.dist='random', readseam=F, seam=NA, seamdist='random', seamrandp=c(0.01,0.05,0.1,0.5), seampla=NA, seamplb=NA, readbpam=F, bpam=NA, bpamdist='random', bpamrandp=0.1, bpampla=NA, bpamplb=NA, readprobadoptvec=F, probadoptvec=NA, probadoptmean=0.1, probadoptsd=0.1, readprobestabvec=F, probestabvec=NA, probestabmean=0.1, probestabsd=0.1, maneffdir='decrease_estab', maneffmean=0.5, maneffsd=0.1, usethreshman=F, maneffthresh=NA, sampeffort=NA)
sens.exp2a <- INAscene(nreals=10, ntimesteps=10, doplot=F, readgeocoords=F, geocoords=NA, numnodes=50, xrange=c(0,50), yrange=c(0,50), randgeo=T, readinitinfo=F, initinfo=NA, initinfo.norp='prop', initinfo.n=NA, initinfo.p=0.05, initinfo.dist='random', readinitbio=F, initbio=NA, initbio.norp='prop', initbio.n=NA, initbio.p=0.05, initbio.dist='upedge', readseam=F, seam=NA, seamdist='powerlaw', seamrandp=NA, seampla=1, seamplb=0.5, readbpam=F, bpam=NA, bpamdist='powerlaw', bpamrandp=NA, bpampla=1, bpamplb=0.5, readprobadoptvec=F, probadoptvec=NA, probadoptmean=0.5, probadoptsd=0.2, readprobestabvec=F, probestabvec=NA, probestabmean=0.5, probestabsd=0.2, maneffdir='decrease_estab', maneffmean=0.5, maneffsd=0.2, usethreshman=F, maneffthresh=NA, sampeffort=2)
sens.exp2a <- INAscene(nreals=10, ntimesteps=10, doplot=F, outputvol='less', readgeocoords=F, geocoords=NA, numnodes=50, xrange=c(0,50), yrange=c(0,50), randgeo=T, readinitinfo=F, initinfo=NA, initinfo.norp='prop', initinfo.n=NA, initinfo.p=0.05, initinfo.dist='random', readinitbio=F, initbio=NA, initbio.norp='prop', initbio.n=NA, initbio.p=0.05, initbio.dist='upedge', readseam=F, seam=NA, seamdist='powerlaw', seamrandp=NA, seampla=1, seamplb=0.5, readbpam=F, bpam=NA, bpamdist='powerlaw', bpamrandp=NA, bpampla=1, bpamplb=0.5, readprobadoptvec=F, probadoptvec=NA, probadoptmean=0.5, probadoptsd=0.2, readprobestabvec=F, probestabvec=NA, probestabmean=0.5, probestabsd=0.2, maneffdir='decrease_estab', maneffmean=0.5, maneffsd=0.2, usethreshman=F, maneffthresh=NA, sampeffort=2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.