ntsteps2: Changes management info status and bioentity establishment...

Description Usage Arguments Details Examples

View source: R/ntsteps2.R

Description

This function gives the info status and establishment status at each node after multiple time steps. Its use follows use of the function setup2, or another source of node locations and initial conditions. (Note that communication and dispersal status are given for the beginning of the time step (rather than for the end), so the corresponding output for these has length equal to the number of time steps plus 1. In contrast, adoption and establishment output is of length equal to the number of time steps.) It uses the following functions, as needed: genmovnet, spreadstep, makedec, and estab. It draws on output from function setup2 in terms of whether communication occurs (estinfo), generated geographic locations of nodes as needed (genloc), and the initial locations for management information and the bioentity.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
ntsteps2(
  nsteps,
  geocoords3n,
  infon,
  vect1cn,
  vect1dn,
  readseam3,
  seam3,
  seamdist3,
  seampla3,
  seamplb3,
  seamrandp3,
  readbpam3,
  bpam3,
  bpamdist3,
  bpampla3,
  bpamplb3,
  bpamrandp3,
  readprobadoptvec3,
  probadoptvec3,
  probadoptmean3,
  probadoptsd3,
  maneffdir3,
  maneffmean3n,
  maneffsd3n,
  readprobestabvec3,
  probestabvec3,
  probestabmean3,
  probestabsd3,
  plotmpn = F
)

Arguments

nsteps

number of time steps to be evaluated

geocoords3n

matrix of x,y coordinates of nodes

infon

is T if estimated effect size exceeds threshold for communication (so communication can occur), F otherwise (can be evaluated in estinfo and/or setup2)

vect1cn

com (spreadstep) status of nodes before spread

vect1dn

disp (spreadstep) status of nodes before spread

readseam3

if T, the communication adjacency matrix is read in rather than being generated by function genmovnet

seam3

communication adjacency matrix, read in if readseam3=T (rows as sources and columns as sinks)

seamdist3

com (genmovnet) the function of distance used to estimate movement probability - 'random' (not related to distance) or 'powerlaw'

seampla3

com (genmovnet) inverse power law parameter a in ad^(-b)

seamplb3

com (genmovnet) inverse power law parameter b in ad^(-b)

seamrandp3

com (genmovnet) random case, probably of link

readbpam3

if T, the dispersal adjacency matrix is read in rather than being generated by function genmovnet

bpam3

dispersal adjacency matrix, read in if readbpam3=T (rows as sources and columns as sinks)

bpamdist3

disp (genmovnet) the function of distance used to estimate movement probability - 'random' (not related to distance) or 'powerlaw'

bpampla3

disp (genmovnet) inverse power law parameter a in ad^(-b)

bpamplb3

disp (genmovnet) inverse power law parameter b in ad^(-b)

bpamrandp3

disp (genmovnet) random case, probably of link

readprobadoptvec3

if T, then a VECTOR of probadoptvec3 values is read in; if F, probadoptmean3 and probadoptsd3 are used to generate the vector

probadoptvec3

vector of probabilities of adoption if informed for nodes in the network (readprobadoptvec3 determines whether probadoptvec3 is read in to makedec or generated within makedec based on probadoptmean3 and probadoptsd3)

probadoptmean3

(makedec) mean probability of adopting management if informed

probadoptsd3

(makedec) sd in truncated normal distribution of probability of adoption

maneffdir3

if maneffdir3='decrease_estab', the management reduces the probability of establishment; if maneffdir3='increase_estab', the management reduces the probability that establishment does NOT occur

maneffmean3n

(estab) mean management effect (proportional reduction in estabp)

maneffsd3n

(estab) sd of management effect

readprobestabvec3

(estab) if T, then a vector probestabvec3 is read in; otherwise the vector is generated using probestabmean3 and probestabsd3

probestabvec3

(estab) vector of probabilities of establishment (read in or generated when the function is run, depending on readprobestabvec3 equal to T or F)

probestabmean3

(estab) mean probability of establishment (new or CONTINUED) in absence of management

probestabsd3

(estab) sd in probability of establishment in truncated normal distribution

plotmpn

if T, plots of resulting presence of information and species are generated

comvec

vector of 1=info is present, 0=info is not present

Details

Updated 2020-09-05

Examples

1
2
3
4
5
6
7
x2 <- ntsteps2(nsteps=3, infon=T, geocoords3n=matrix(c(1,1, 1,2, 1,3, 2,1, 2,2, 2,3),byrow=T,ncol=2), vect1cn=c(1,1,1,0,0,0), vect1dn=c(0,0,0,1,1,1), readseam3=F, seamdist3='powerlaw', seampla3=1, seamplb3=1, readbpam3=F, bpamdist3='powerlaw', bpampla3=1, bpamplb3=1, probadoptmean3=0.5, probadoptsd3=0.1, probestabmean3=0.5, probestabsd3=0.1, maneffdir3='decrease_estab', maneffmean3n=0.5, maneffsd3n=0.1,  readprobestabvec3=F, readprobadoptvec3=F, plotmpn=T)
x2z <- ntsteps2(nsteps=3, infon=T, geocoords3n=matrix(c(1,1, 1,2, 1,3, 2,1, 2,2, 2,3),byrow=T,ncol=2), vect1cn=c(1,1,1,0,0,0), vect1dn=c(0,0,0,1,1,1), readseam3=F, seamdist3='powerlaw', seampla3=0.5, seamplb3=2, readbpam3=F, bpamdist3='powerlaw', bpampla3=0.5, bpamplb3=2, probadoptmean3=0.5, probadoptsd3=0.1, probestabmean3=0.5, probestabsd3=0.1, maneffdir3='decrease_estab', maneffmean3n=0.5, maneffsd3n=0.1, readprobestabvec3=F, readprobadoptvec3=F, plotmpn=T)
x3 <- ntsteps2(nsteps=2, infon=T, geocoords3n=matrix(runif(n=100)*100,byrow=T,ncol=2), vect1cn=c(rep(1,10),rep(0,40)), vect1dn=sample(c(rep(1,10),rep(0,40))), readseam3=F, seamdist3='powerlaw', seampla3=1, seamplb3=1, readbpam3=F, bpamdist3='powerlaw', bpampla3=1, bpamplb3=1, probadoptmean3=0.5, probadoptsd3=0.1, probestabmean3=0.5, probestabsd3=0.1, maneffdir3='decrease_estab', maneffmean3n=0.5, maneffsd3n=0.1, readprobestabvec3=F, readprobadoptvec3=F, plotmpn=T)
x9 <- ntsteps2(nsteps=3, infon=T, geocoords3n=matrix(c(1,1, 1,2, 1,3, 2,1, 2,2, 2,3),byrow=T,ncol=2), vect1cn=c(1,1,1,0,0,0), vect1dn=c(0,0,0,1,1,1), readseam3=T, seam3=matrix(c(0,1,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0),byrow=T,ncol=6), readbpam3=T, bpam3=matrix(c(0,0,0,0,0,0, 0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0),byrow=T,ncol=6), probadoptmean3=0.3, probadoptsd3=0.1, probestabmean3=0.2, probestabsd3=0.1, maneffdir3='decrease_estab', maneffmean3n=0.5, maneffsd3n=0.1, readprobestabvec3=F, readprobadoptvec3=F, plotmpn=T)
x9p <- ntsteps2(nsteps=3, infon=T, geocoords3n=matrix(c(1,1, 1,2, 1,3, 2,1, 2,2, 2,3),byrow=T,ncol=2), vect1cn=c(1,1,1,0,0,0), vect1dn=c(0,0,0,1,1,1), readseam3=T, seam3=matrix(c(0.5,1,0.2,0.6,0.1,0.3, 0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0),byrow=T,ncol=6), readbpam3=T, bpam3=matrix(c(0.2,0.2,0.2,0.2,0.2,0.2, 0,0,1,0,0,0, 0,0,0,1,0,0, 0,0,0,0,1,0, 0,0,0,0,0,1, 1,0,0,0,0,0),byrow=T,ncol=6), probadoptmean3=0.3, probadoptsd3=0.1, probestabmean3=0.2, probestabsd3=0.1, maneffdir3='decrease_estab', maneffmean3n=0.5, maneffsd3n=0.1, readprobestabvec3=F, readprobadoptvec3=F, plotmpn=T)
x12 <- ntsteps2(nsteps=3, infon=F, geocoords3n=matrix(c(1,1, 1,2, 1,3, 2,1, 2,2, 2,3),byrow=T,ncol=2), vect1cn=c(1,1,1,0,0,0), vect1dn=c(0,0,0,1,1,1), readseam3=F, seamdist3='powerlaw', seampla3=1, seamplb3=1, readbpam3=F, bpamdist='powerlaw', bpampla3=1, bpamplb3=1, probadoptmean3=0.3, probadoptsd3=0.1, probestabmean3=0.2, probestabsd3=0.1, maneffdir3='decrease_estab', maneffmean3n=0.5, maneffsd3n=0.1, readprobestabvec3=F, readprobadoptvec3=F, plotmpn=T)
x13 <- ntsteps2(nsteps=5, infon=T, geocoords3n=matrix(c(1,1, 1,2, 1,3, 2,1, 2,2, 2,3),byrow=T,ncol=2), vect1cn=c(1,1,1,0,0,0), vect1dn=c(0,0,0,1,1,1), readseam3=F, seamdist3='powerlaw', seampla3=1, seamplb3=1, readbpam3=F, bpamdist3='powerlaw', bpampla3=1, bpamplb3=1, probadoptmean3=0.3, probadoptsd3=0.1, probestabmean3=0.2, probestabsd3=0.1, maneffdir3='decrease_estab', maneffmean3n=0.5, maneffsd3n=0.1, readprobestabvec3=F, readprobadoptvec3=F, plotmpn=T)

GarrettLab/INApreliminary documentation built on June 7, 2021, 10:59 a.m.