View source: R/sp_class_perform.R
| sp_class_perform | R Documentation |
Compare spectra of each pair of indicated groups at each wavelength.
sp_class_perform(
sp,
by = stop("Parameter 'by' is missing."),
measure = c("auc", "bac", "j", "sesp", "tpr")
)
sp_class_perform_cv(
sp,
by = stop("Parameter 'by' is not specified."),
measure = c("sesp", "j", "tpr")[1],
cvo = cvo_create_folds(sp, by, seeds),
seeds = NULL,
sp_test = NULL
)
print.sp_class_perform_cv(obj)
print.sp_classif_performance(obj)
## S3 method for class 'sp_classif_performance'
predict(object, newdata, what = c("values", "performance"), ...)
sp_classification_performance(
sp,
by = stop("Parameter 'by' is not specified."),
measure = c("sesp", "j", "tpr")[1],
cvo = cvo_create_folds(sp, by, seeds),
seeds = NULL,
...
)
sp_compare_gr_wl(
sp,
by = stop("Parameter 'by' is missing."),
measure = c("auc", "j", "sesp", "tpr"),
...
)
class_perform_sp(
sp,
by = stop("Parameter 'by' is missing."),
measure = c("auc", "j", "sesp", "tpr"),
...
)
sp |
|
by |
A vector (factor variable) with indicated groups for each case:
either variable name inside the object |
measure |
string with measure of classification performance. Currently
available options: |
cvo |
a cross-validation object (cvo), created with function
|
Fields of sp_classif_performance object:
type type of data used ("Training data");
performance - hyperSepc object with performance estimates;
cutoffs - hyperSepc object with estimates of critical values
(cut-off points);
means - hyperSepc object with means of each compared group;
means.description - type of those means
("10% trimmed mean (of each group)");
compared_by_var - variable name, that was used for grouping;
measure- measure of performance.
Fields of sp_class_perform_cv object:
data - a hyperSpec object with data used in calculations;
cvo - cross-validation object used for analysis;
train_performance - performance estimates of training datasets for each repetition and fold;
test_performance - performance estimates of testing datasets for each repetition and fold;
cutoffs - estimates of cut-off values for each repetition and fold;
obj - a list of sp_classif_performance objects for each repetition and fold;
Vilmantas Gegzna
Other spHelper functions for spectroscopy and hyperSpec:
IQR_outliers(),
binning(),
file,
gapDer(),
hy2mat(),
hyAdd_Label_wl(),
hyAdd_Labels_PAP_PD_2014(),
hyAdd_Labels_TD2009(),
hyAdd(),
hyDrop_NA(),
hyGet_palette(),
hyRm_palette(),
mad_outliers(),
mean_Nsd(),
median_Nmad(),
plot_hyPalette(),
prepare_PAP_RK_2014__MATLAB_failui(),
read.OOIBase32(),
read.OceanView.header(),
read.OceanView(),
read.sp.csv2(),
read3csv2hy(),
replace_spc(),
sd_outliers(),
spStat()
library(spHelper)
library(spPlot)
library(ROCR)
sp <- sp_filter(Spectra2)
# Default measure of performace is AUC:
sp_compared <- sp_class_perform(sp, "class")
sp_compared <- sp_class_perform(sp, "class", measure = "bac")
names(sp_compared)
## [1] "type" "performance" "cutoffs" "means"
## [5] "means.description" "compared_by_var" "measure"
sp_compared$performance
## hyperSpec object
## 6 spectra
## 2 data columns
## 501 data points / spectrum
## wavelength: lambda/nm [integer] 300 301 ... 800
## data: (6 rows x 2 columns)
## 1. spc: Mean of Se and Sp [matrix501] 0.6266667 0.7310526 ... 0.5763674
## 2. Compared: Compared groups [character] K vs. l K vs. N ... N vs. S1
sp_compared$cutoffs
## hyperSpec object
## 6 spectra
## 2 data columns
## 501 data points / spectrum
## wavelength: lambda/nm [integer] 300 301 ... 800
## data: (6 rows x 2 columns)
## 1. spc: Cut-offs [matrix501] 162.3499 151.5054 ... 19.60151
## 2. Compared: Compared groups [character] K vs. l K vs. N ... N vs. S1
theme_set(theme_bw())
ggplot(sp_compared$performance, aes(color = Compared)) + geom_line()
ggplot(sp_compared$cutoffs, aes(color = Compared)) + geom_line()
qplot_sp(sp_compared$performance, by = "Compared") + set_ggLims(c(.45,1),"y")
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sp2 <- Spectra2[,,500~510]
sp_compared_cv <- sp_class_perform_cv(Sp2, "class")
names(sp_compared_cv)
## [1] "data" "cvo" "train_performance"
## [4] "test_performance" "cutoffs" "obj"
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Not run: \donttest{
rez <- sp_class_perform_cv(sp = Spectra2, by = "gr")
rez
}
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.