Description Usage Arguments Details Value
This function describes the evolution of the single-cell growth probability with temperature. For this, we used the model proposed by Jean Christophe Augustin and Aurelia Czarnecka-Kwasiborski in 2012, to describe the increase of the probability from 0 to 1 with increasing values of temperature.
1 |
T |
Temperature # a number |
Tinf |
The theoritical cellular minimal temperature for growth #a number |
Tsup |
The theoritical cellular maximal temperature for growth #a number |
c |
a parameter #a number |
\begin{equation}p(T)=≤ft\{\begin{array}{ll} 0, & T ≤q T_{\mathrm{inf}} \\ \frac{\exp (T / c)-\exp ≤ft(T_{\mathrm{inf}} / c\right)}{\exp ≤ft(T_{\mathrm{sup}} / c\right)-\exp ≤ft(T_{\mathrm{inf} / c}\right)}, & T_{\mathrm{inf}}<T<T_{\mathrm{sup}} \\ 1, & T ≥q T_{\mathrm{sup}} \end{array}\right.\end{equation}
proba_T_Aug The single-cell growth probability, which increases from O to 1 when temperature value increases at a more favorable condition #a number
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.