Description Usage Arguments Details Value Examples
View source: R/expandedjameson.R
This is an expanded version of the Jameson model by Giménez and Dalgaard (2004),this new model includes a temperature dependent parameter (gamma).
1 | expandedjameson(t, state, parameters)
|
t |
time vector |
state |
initial values of Q1 (physiological state of the first flora),Q2 (physiological state of the second flora), y1 (the flora population 1) and y2 (the flora population 2) for the first time value. |
parameters |
parameter list |
\begin{equation}\begin{array}{l} t<t_{\operatorname{lag}-S}, \quad \frac{\mathrm{d} S / \mathrm{d} t}{S_{t}}=0 \\ t ≥q t_{\operatorname{lag}-S}, \quad \frac{\mathrm{d} S / \mathrm{d} t}{S_{t}}=μ_{\max }^{S} \times≤ft(1-\frac{S_{t}}{S_{\max }}\right) \times≤ft(1-\frac{γ \times \mathrm{NB}_{t}}{\mathrm{NB}_{\max }}\right) \\ t<t_{\mathrm{lag}-\mathrm{NB}}, \quad \frac{\mathrm{d} \mathrm{NB} / \mathrm{d} t}{\mathrm{NB}}=0 \\ t ≥q t_{\mathrm{lag}-\mathrm{NB}}, \quad \frac{\mathrm{d} \mathrm{NB} / \mathrm{dt}}{\mathrm{NB}}=μ_{\max }^{\mathrm{NB}} \times≤ft(1-\frac{\mathrm{NB}_{t}}{\mathrm{NB}_{\max }}\right) \times≤ft(1-\frac{S_{t}}{S_{\operatorname{mox}}}\right) \end{array}\end{equation}
dQ1,dQ2,dy1,dy2
1 2 3 4 5 6 7 | library(deSolve)
out <- ode(y = c(Q1=1/((1/exp(-2))-1),Q2=1/((1/exp(-10))-1),y1=1,y2=10),
times = seq(from=0, to=200, by = 1), func = expandedjameson,
parms = c(gamma=1, mumax1 = 0.14, mumax2=0.3, ymax1=100000,ymax2=10000000))
plot(out)
plot(time,log10(out[,"y1"]),col="red", lwd = 2, lty = 1)
plot(time,log10(out[,"y2"]),col="green", lwd = 2, lty = 1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.