#####################################################
# forecast plots (data + residual
####################################################
#' Forecast plots
#'
#' linnear regression plots and residual plot for sibling, ln.sibling, lnY.sibling, lnS.lnR and ricker models
#' @param sibling A tible with one column
#' @param forecast.age A tible with one column
#' @param f.cast.yr year to forecast (numeric)
#' @param riv.nam A character string, river
#' @param start.year oldest year to include in the forecast model
#' @param model sibling, ln.sibling, lnY.sibling, lnS.lnR, ricker
#' @keywords forecast
#' @export
#' @export plot.data
#' @examples
#' plot.data()
#' @author Greg Buck
plot.data <- function(f.cast.age,sibling,f.cast.yr,riv.name,start.yr,model){
#read brood tables into memory
riv <- read_excel(data,
sheet = riv.name , col_types = "numeric", skip = 1)
t <- c("brood.year","age.01","age.02","age.03","age.04","age.05","age.11","age.12",
"age.13","age.14","age.15","age.21","age.22","age.23","age.24","age.31","age.32",
"age.33","age.34","escapement","recruits","r.per.s")
tt <- as.vector(t)
names(riv)<-t
riv$return.year <- riv$brood.year + as.numeric(substr(f.cast.age,5,5)) + as.numeric(substr(f.cast.age,6,6)) + 1
dat <- riv[(riv$brood.year >= start.yr & riv$return.year <= f.cast.yr),
c("brood.year","return.year","escapement",sibling,f.cast.age)]
names(dat) <- c("brood.year","return.year","spawners","sibling","f.cast.age")
#data transformations
master <- dat %>%
mutate(ln.f.cast.age = log(f.cast.age + 1)) %>%
mutate(lnS = log(spawners)) %>%
mutate(ln.sibling = log(sibling +1)) %>%
mutate(lnRS = log(f.cast.age / spawners))
if(model == "sibling"){
p <- ggplot(data = master, aes(x = sibling, y = f.cast.age)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
r <- ggplot(lm(data=master,f.cast.age~sibling)) +
geom_point(aes(x=.fitted, y=.resid)) +
geom_hline(yintercept=0)
print(p)
print(r)
} # end if
if(model == "ln.sibling"){
p <- ggplot(data = master, aes(x = ln.sibling, y = ln.f.cast.age)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
r <- ggplot(lm(data=master,ln.f.cast.age~ln.sibling)) +
geom_point(aes(x=.fitted, y=.resid)) +
geom_hline(yintercept=0)
print(p)
print(r)
} # end if
if(model == "lnY.sibling"){
p <- ggplot(data = master, aes(x = sibling, y = ln.f.cast.age)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
r <- ggplot(lm(data=master,ln.f.cast.age~sibling)) +
geom_point(aes(x=.fitted, y=.resid)) +
geom_hline(yintercept=0)
print(p)
print(r)
} # end if
if(model == "lnS.lnR"){
p <- ggplot(data = master, aes(x = lnS, y = ln.f.cast.age)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
r <- ggplot(lm(data=master,ln.f.cast.age~lnS)) +
geom_point(aes(x=.fitted, y=.resid)) +
geom_hline(yintercept=0)
print(p)
print(r)
} # end if
if(model == "ricker"){
p <- ggplot(data = master, aes(x = lnS, y = lnRS)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
r <- ggplot(lm(data=master,lnRS~lnS)) +
geom_point(aes(x=.fitted, y=.resid)) +
geom_hline(yintercept=0)
print(p)
print(r)
} # end if
} # end plot data function
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.