#' Function for returning treatment assignments in Pocock's Design
#'
#' This function takes a vector of factor level assignments, and returns treatment assignments
#' @param x Vector of factor level assignments
#' @param p Default is 3/4.
#' @param n.trt Number of treatments used in the trial
#' @param Best is the selected best treatment if past the first analysis. Default is 0
#' @param tr Tr is the vector of treamtnet assignments. Default is NULL
#' @param n.trt The number of treatments used in the analaysis if at the first stage in the analysis.
#' @export
#' @examples
#' psd(x = seamlessTrials::all)
psd=function(x,p1=3/4,best = 0,tr = NULL,n.trt)
{
if (best == 0) trts = seq(0,n.trt) else trts = unique(c(0,best))
if (is.null(tr)) keeps = rep(TRUE,nrow(x)) else keeps = c(tr %in% trts,rep(TRUE,nrow(x)-length(tr)))
if (is.null(tr)) arrival = as.matrix(ade4::acm.disjonctif(x)) else arrival = as.matrix(ade4::acm.disjonctif(x[keeps,]))
# arrival = as.matrix(ade4::acm.disjonctif(x))
# test1 = ifelse(x==max(x), 0,1)
# test2 = x-1
# test3 = apply(test1, 1, function(j) sum(j*2^(rev(seq_along(j))-1)))+1
# test4 = apply(test2, 1, function(j) sum(j*2^(rev(seq_along(j))-1)))+1
weight = rep(1,ncol(arrival))
s = length(tr[tr %in% trts]) + 1
n.trt = length(trts)
N = nrow(arrival)
# test = apply(test,1 ,function(x) sum(x * 2^(rev(seq_along(x))-1)))+1
base = matrix(rep(0,n.trt*ncol(arrival)),ncol=ncol(arrival))
# base2 = matrix(rep(0,n.trt),ncol=1)
for ( i in 1:length(trts)) base[i,] = colSums(arrival[which(tr[tr %in% trts]==trts[i]),])
if (is.null(tr)) tr=rep(NA,N) else tr = tr[keeps]
# out = list()
# trin = which(trts==trts)
delts = rep(0,(n.trt))
while(s<=N)
{
for ( i in 1:length(trts)) {
inc = base
inc[i,] = base[i,] + t(arrival[s,])
# delts[i]=t(arrival[s,])%*%(Rfast::colrange(inc)*weight)
delts[i]=t(arrival[s,])%*%((do.call(pmax,lapply(seq_len(nrow(inc)),function(j) inc[j,])) - do.call(pmin,lapply(seq_len(nrow(inc)),function(i) inc[i,])))*weight)
}
p=g(delts,p1,n.trt)
tr[s] = sample(trts,1,p,replace=TRUE)
base[which(trts==tr[s]),] = base[which(trts==tr[s]),] + t(arrival[s,])
s=s+1
}
tr
}
#' A function to calculate G in the Pocock Design and return a vector of p
#'
#' This function is not generally used. It is used in the calculation of the treatment assignments in psd
#' @param delts x is the vector of deltas in Pocock's design
#' @param p1 = 3/4
g=function(delts,p1=3/4,n.trt)
{
p = NULL
best = which(delts == min(delts))
if (length(best) > 1) {
p = rep(1/n.trt,n.trt)
} else {
p = rep(1-p1/(n.trt-1),n.trt)
p[best] = 3/4
}
p
}
#' spbd Function
#'
#' Function to determine treatment assignments in SPB Design
#' @param x X vector of covariate values, ranging from 0 to total number of factor levels
#' @param n Total sample size
#' @param m M is the level of discretization
#' @param n.trt n.trt is the number of treatments in the trial
#' @param block.size The block size used in the SPBD function
#' @export
#' @examples
#' spbd()
spbd=function(covValues,m=4, best = 0, tr = NULL, n.trt, block.size = 20)
{
if (best == 0) trts = seq(0,n.trt) else trts = c(0,best)
if (is.null(tr)) keeps = rep(TRUE,nrow(covValues)) else keeps = c(tr %in% trts,rep(TRUE,nrow(covValues)-length(tr)))
n.trt = length(trts)
# if (is.null(tr)) arrival = as.matrix(ade4::acm.disjonctif(x)) else arrival = as.matrix(ade4::acm.disjonctif(x[keeps,]))
s = length(tr) + 1
z1 = covValues[,1]-1
z2 = covValues[,2]-1
# covValues = covValues - 1
flip = ifelse(covValues == max(covValues),0,1)
x = apply(flip,1 ,function(x) sum(x * 2^(rev(seq_along(x))-1)))+1
n = nrow(flip)
# x=NULL #covaiate info used for function spbd, values from 1 to 4
#think I want this to be 100, 130-30
# while(s<=n)
# {
# if(z1[s]==1 & z2[s]==1) x[s]=1 else
# if(z1[s]==1 & z2[s]==0) x[s]=2 else
# if(z1[s]==0 & z2[s]==1) x[s]=3 else
# if(z1[s]==0 & z2[s]==0) x[s]=4
#
# s=s+1
# }
x = x[s:n]
trkeeps = tr[tr %in% trts]
i = 1
tr=NULL
while(i<=m)
{
# print(i)
# print(length(x[x==i]))
tr[x==i]=pbr(length(x[x==i]),n.trt = n.trt,trts=trts, block.size = block.size)
# print(tr)
i=i+1
}
tr = c(trkeeps,tr)
return(tr)
}
#' PBR Function
#'
#' This function is not generally used. This is used in spbd to determine treatment assignments
#' @param n Total n size
#' @param block.size This is the number of subjects in each block, needs to be a multiple of the number of treatments
#' @param n.trt is the number of treatments in the trial, including the control
pbr=function(n,block.size=20,n.trt,trts) #block.size is the number of subjects in each block, assuming fixed
{
# trts = trts[order(trts)]
block.num=ceiling(n/block.size)
# print(block.num)
cards=NULL
i=1
while(i<=block.num)
{
full = matrix(sort(rep(trts,block.size/2),decreasing = TRUE),ncol=n.trt)
# print(full)
cards = c(cards, sample(full,block.size))
# cards=c(cards,sample(cbind(rep(1,block.size/2),rep(0,block.size/2)),block.size))
i=i+1
# print(cards)
}
# print(n)
cards=cards[1:n] #Why up to n? # Is this the step that deals with "a block size larger than the sum of the treatment group ratio"
return(cards)
}
#' No CAR Function
#'
#' This function is to randomally allocation treatments
#' @param covValues covValues is a matrix of covariate values, ranging from 0 to total number of factor levels
#' @param best best is the best treatment after the first run
#' @param tr Tr is vector of treatment assignments from the previous run if applicable
#' @param n.trt n.trt is the number of treatments used in the analysis. Only applicable before the first analysis
#' @export
nocar = function(covValues, best = 0, tr = NULL, n.trt) {
if (best == 0) trts = seq(0,n.trt) else trts = c(0,best)
if (is.null(tr)) keeps = rep(TRUE,nrow(covValues)) else keeps = c(tr %in% trts,rep(TRUE,nrow(covValues)-length(tr)))
s = length(tr[tr %in% trts]) + 1
n.trt = length(trts)
N = nrow(covValues)
# base = matrix(rep(0,n.trt*ncol(arrival)),ncol=ncol(arrival))
# for ( i in 1:length(trts)) base[i,] = colSums(arrival[which(tr[tr %in% trts]==trts[i]),])
if (is.null(tr)) tr=rep(NA,N) else tr = tr[keeps]
# out = list()
# trin = which(trts==trts)
# lapply(covValues, function(x) sum(x * 2^(rev(seq_along(x))-1)))
N = length(tr)
while(s<=N)
{
tr[s] = sample(trts, 1,rep(1/(length(trts)),n.trt), replace=TRUE)
s=s+1
}
tr = na.omit(tr)
tr
}
#' No random Function
#'
#' This function is to allocate treatments equally
#' @param covValues covValues is a matrix of covariate values, ranging from 0 to total number of factor levels
#' @param best best is the best treatment after the first run
#' @param tr Tr is vector of treatment assignments from the previous run if applicable
#' @param n.trt n.trt is the number of treatments used in the analysis. Only applicable before the first analysis
#' @export
norandom = function(covValues, best = 0, tr = NULL, n.trt) {
if (best == 0) trts = seq(0,n.trt) else trts = c(0,best)
if (is.null(tr)) keeps = rep(TRUE,nrow(covValues)) else keeps = c(tr %in% trts,rep(TRUE,nrow(covValues)-length(tr)))
s = length(tr[tr %in% trts]) + 1
n.trt = length(trts)
N = nrow(covValues)
# base = matrix(rep(0,n.trt*ncol(arrival)),ncol=ncol(arrival))
# for ( i in 1:length(trts)) base[i,] = colSums(arrival[which(tr[tr %in% trts]==trts[i]),])
if (is.null(tr)) tr=rep(NA,N) else tr = tr[keeps]
N = length(tr)
# out = list()
# trin = which(trts==trts)
# lapply(covValues, function(x) sum(x * 2^(rev(seq_along(x))-1)))
# tr[s:N] = rep(trts,(N-s+1)/n.trt)
tr[s:N] = rep(trts,rep((N-s+1)/n.trt,n.trt))
tr = na.omit(tr)
tr
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.