Description Usage Arguments Value Author(s) References See Also Examples
makePriors generates diffuse priors for binIRT.
1  |   makePriors(.N = 20, .J = 100, .D = 1)
 | 
.N | 
 integer, number of subjects/legislators to generate priors for.  | 
.J | 
 integer, number of items/bills to generate priors for.  | 
.D | 
 integer, number of dimensions.  | 
x$mu  A (D x D) prior means matrix for respondent ideal points x_i.
x$sigma  A (D x D) prior covariance matrix for respondent ideal points x_i.
beta$mu  A ( D+1 x 1) prior means matrix for α_j and β_j.
beta$sigma  A ( D+1 x D+1 ) prior covariance matrix for α_j and β_j.
Kosuke Imai kimai@princeton.edu
James Lo jameslo@princeton.edu
Jonathan Olmsted jpolmsted@gmail.com
Kosuke Imai, James Lo, and Jonathan Olmsted “Fast Estimation of Ideal Points with Massive Data.” Working Paper. Available at http://imai.princeton.edu/research/fastideal.html.
'binIRT', 'getStarts', 'convertRC'.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22  | ## Data from 109th US Senate
data(s109)
## Convert data and make starts/priors for estimation
rc <- convertRC(s109)
p <- makePriors(rc$n, rc$m, 1)
s <- getStarts(rc$n, rc$m, 1)
## Conduct estimates
lout <- binIRT(.rc = rc,
                .starts = s,
                .priors = p,
                .control = {
                    list(threads = 1,
                         verbose = FALSE,
                         thresh = 1e-6
                         )
                }
                )
## Look at first 10 ideal point estimates
lout$means$x[1:10]
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.