#########################################################################################################################
###################################### LISTS NEEDED TO RUN SDMS ---- ####################################################
#########################################################################################################################
## 1). CREATE OCCURRENCE LISTS ===========================================================================================
## GBIF columns to keep ----
gbif_keep <- c(## TAXONOMY
"searchTaxon",
"species",
"scientificName",
"taxonRank",
"taxonKey",
"genus",
"family",
## CULTIVATION
"cloc",
"basisOfRecord",
"locality",
"establishmentMeans",
"institutionCode",
"datasetName",
"habitat",
"eventRemarks",
## RECORD ID
"recordedBy",
"identifiedBy",
"gbifID",
"catalogNumber",
## PLACE/TIME
"lat",
"lon",
"decimalLatitude",
"decimalLongitude",
"country",
"coordinateUncertaintyInMeters",
"geodeticDatum",
"year",
"month",
"day",
"eventDate",
"eventID")
## ALA columns to keep ----
ALA_keep <- c(## TAXONOMY
"searchTaxon",
"scientificName",
"scientificNameOriginal",
"species",
"taxonRank",
"rank",
"genus",
"family",
## CULTIVATION
"occCultivatedEscapee",
"basisOfRecord",
"locality",
"establishmentMeans",
"institutionCode",
"datasetName",
"habitat",
"eventRemarks",
"taxonomicQuality",
## RECORD ID
"recordedBy",
"id",
"catalogNumber",
"identificationID",
"identifiedBy",
"occurrenceID",
"basisOfRecord",
"institutionCode",
## PLACE/TIME
"latitude",
"longitude",
"lat",
"lon",
"coordinateUncertaintyInMetres",
"coordinateUncertaintyInMeters",
"zeroCoordinates",
"country",
"state",
"IBRA7Regions",
"IBRA.7.Subregions",
"localGovernmentAreas",
"locality",
"geodeticDatum",
"year",
"month",
"day",
"eventDate",
"eventID")
## 2). CREATE RASTER LISTS ===========================================================================================
## These rasters could change, but the names in the projections, etc, would also need to change
## Create the variables needed to access current environmental conditions + their names in the functions
## Names of all the worldclim variables used to extract the raster data
env_variables = c("Annual_mean_temp",
"Mean_diurnal_range",
"Isothermality",
"Temp_seasonality",
"Max_temp_warm_month",
"Min_temp_cold_month",
"Temp_annual_range",
"Mean_temp_wet_qu",
"Mean_temp_dry_qu",
"Mean_temp_warm_qu",
"Mean_temp_cold_qu",
"Annual_precip",
"Precip_wet_month",
"Precip_dry_month",
"Precip_seasonality",
"Precip_wet_qu",
"Precip_dry_qu",
"Precip_warm_qu",
"Precip_col_qu")
bioclim_variables = c('bio_01',
'bio_02',
'bio_03',
'bio_04',
'bio_05',
'bio_06',
'bio_07',
'bio_08',
'bio_09',
'bio_10',
'bio_11',
## Rainfall
'bio_12',
'bio_13',
'bio_14',
'bio_15',
'bio_16',
'bio_17',
'bio_18',
'bio_19')
## Names of the sdm data table ---
sdm_table_vars <- c('searchTaxon', 'lon', 'lat', 'SOURCE',
'Annual_mean_temp', 'Mean_diurnal_range', 'Isothermality', 'Temp_seasonality',
'Max_temp_warm_month', 'Min_temp_cold_month', 'Temp_annual_range', 'Mean_temp_wet_qu',
'Mean_temp_dry_qu', 'Mean_temp_warm_qu', 'Mean_temp_cold_qu',
'Annual_precip', 'Precip_wet_month', 'Precip_dry_month', 'Precip_seasonality',
'Precip_wet_qu', 'Precip_dry_qu', 'Precip_warm_qu', 'Precip_col_qu')
## Names of the best 15 worldclim predictors ----
## i.e. 'backwards selected' predictors
bs_predictors <- c("Annual_mean_temp", "Mean_diurnal_range", "Isothermality", "Temp_seasonality",
"Max_temp_warm_month", "Min_temp_cold_month", "Temp_annual_range",
"Mean_temp_warm_qu", "Mean_temp_cold_qu",
"Annual_precip", "Precip_wet_month", "Precip_dry_month", "Precip_seasonality",
"Precip_wet_qu", "Precip_dry_qu")
## Just get the 6 models picked by CSIRO for Australia, for 2030, 2050 and 2070
## See the publication for why we choose this
scen_2030 = c("mc85bi30", "no85bi30", "ac85bi30", "cc85bi30", "gf85bi30", "hg85bi30")
scen_2050 = c("mc85bi50", "no85bi50", "ac85bi50", "cc85bi50", "gf85bi50", "hg85bi50")
scen_2070 = c("mc85bi70", "no85bi70", "ac85bi70", "cc85bi70", "gf85bi70", "hg85bi70")
## Make a list of SDM columns needed ----
results_columns = c("searchTaxon", ## From the ALA/ GBIF download code
"Origin", ## native/extoic : from Anthony Manea's spreadsheet, affected by taxonomy....
"Family", ## From Anthony Manea's spreadsheet, will be affected by taxonomy....
"Maxent_records", ## No. records used in the SDM
"Aus_records", ## No. AUS records :: from the R workflow
"AOO", ## Global Area of occurrence
"KOP_count", ## Number of koppen zones each species is found in...
"Number_var", ## No. maxent variables :: from Maxent code
"Var_pcont", ## Maxent Variable with highest permutation importance
"Per_cont", ## The permutaiton importance of that variable
"Var_pimp", ## Maxent Variable with highest permutation importance
"Perm_imp", ## The permutaiton importance of that variable
"Iterations", ## No. iterations
"Training_AUC", ## training AUC
"Max_tss", ## Maximium True skill statistic
"Number_background_points", ## No. background points
"Logistic_threshold",
"Omission_rate" ## Maxent threshold)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.