#' Groups Clusters
#'
#' cluster function will draw Clusters for Groups analysis.
#' @param data input data.frame
#' @param x x variable
#' @param y y variable
#' @param class class variable
#' @param title main title
#' @param subtitle subtitle
#' @param caption caption
#' @return An object of class \code{ggplot}
#' @examples
#' # Compute data with principal components
#' df <- iris[c(1, 2, 3, 4)]
#' pca_mod <- prcomp(df) # compute principal components
#'
#' # Data frame of principal components
#' df_pc <- data.frame(pca_mod$x, Species=iris$Species) # dataframe of principal components
#' plot<- cluster(data=df_pc,x="PC1",y="PC2",class="Species",
#' title="Iris Clustering",
#' subtitle="With principal components PC1 and PC2 as X and Y axis",
#' caption="Source: Iris")
#' plot
#'
#' @import ggplot2
#' @import scales
#' @import reshape2
#' @import ggthemes
#' @import gganimate
#' @import gapminder
#' @import ggalt
#' @import ggExtra
#' @import ggcorrplot
#' @import dplyr
#' @import treemapify
#' @import ggfortify
#' @import zoo
#' @import ggdendro
#' @export
cluster<-function(data,x,y,class,
title=NULL,subtitle=NULL,caption=NULL){
df<-data
x<-x
y<-y
class<-class
k<-length(unique(df[,class]))
label<-unique(df[,class])
for(i in 1:k){
assign(paste0("df",i),value = df[df[,class]==label[i],])
}
p <- ggplot(df, aes_string(x=x, y=y, col=class)) +
geom_point(aes_string(shape=class), size=2) + # draw points
coord_cartesian(xlim = 1.2 * c(min(df[,x]), max(df[,x])),
ylim = 1.2 * c(min(df[,y]), max(df[,y]))) +
theme_fivethirtyeight() +
scale_color_tableau()+
theme(axis.title = element_text(),
legend.title = element_text(face = 4,size = 10),
legend.direction = "horizontal", legend.box = "horizontal") +
labs(title=title,
subtitle=subtitle,
caption=caption)
for(i in 1:k){
p<-p+geom_encircle(data = get(paste0("df",i)), aes_string(x=x, y=y))
}
return(p)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.