normalizeFragmentLength | R Documentation |
Normalizes signals for PCR fragment-length effects. Some or all signals are used to estimated the normalization function. All signals are normalized.
## Default S3 method:
normalizeFragmentLength(y, fragmentLengths, targetFcns=NULL, subsetToFit=NULL,
onMissing=c("ignore", "median"), .isLogged=TRUE, ..., .returnFit=FALSE)
y |
A |
fragmentLengths |
An |
targetFcns |
An optional |
subsetToFit |
The subset of data points used to fit the
normalization function.
If |
onMissing |
Specifies how data points for which there is no
fragment length is normalized.
If |
.isLogged |
A |
... |
Additional arguments passed to |
.returnFit |
A |
Returns a numeric
vector
of the normalized signals.
It is assumed that the fragment-length effects from multiple enzymes added (with equal weights) on the intensity scale. The fragment-length effects are fitted for each enzyme separately based on units that are exclusively for that enzyme. If there are no or very such units for an enzyme, the assumptions of the model are not met and the fit will fail with an error. Then, from the above single-enzyme fits the average effect across enzymes is the calculated for each unit that is on multiple enzymes.
It is possible to specify custom target function effects for each
enzyme via argument targetFcns
. This argument has to be a
list
containing one function
per enzyme and ordered in the same
order as the enzyme are in the columns of argument
fragmentLengths
.
For instance, if one wish to normalize the signals such that their
mean signal as a function of fragment length effect is constantly
equal to 2200 (or the intensity scale), the use
targetFcns=function(fl, ...) log2(2200)
which completely
ignores fragment-length argument 'fl' and always returns a
constant.
If two enzymes are used, then use
targetFcns=rep(list(function(fl, ...) log2(2200)), 2)
.
Note, if targetFcns
is NULL
, this corresponds to
targetFcns=rep(list(function(fl, ...) 0), ncol(fragmentLengths))
.
Alternatively, if one wants to only apply minimal corrections to the signals, then one can normalize toward target functions that correspond to the fragment-length effect of the average array.
Henrik Bengtsson
[1] H. Bengtsson, R. Irizarry, B. Carvalho, and T. Speed, Estimation and assessment of raw copy numbers at the single locus level, Bioinformatics, 2008.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Example 1: Single-enzyme fragment-length normalization of 6 arrays
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Number samples
I <- 9
# Number of loci
J <- 1000
# Fragment lengths
fl <- seq(from=100, to=1000, length.out=J)
# Simulate data points with unknown fragment lengths
hasUnknownFL <- seq(from=1, to=J, by=50)
fl[hasUnknownFL] <- NA
# Simulate data
y <- matrix(0, nrow=J, ncol=I)
maxY <- 12
for (kk in 1:I) {
k <- runif(n=1, min=3, max=5)
mu <- function(fl) {
mu <- rep(maxY, length(fl))
ok <- !is.na(fl)
mu[ok] <- mu[ok] - fl[ok]^{1/k}
mu
}
eps <- rnorm(J, mean=0, sd=1)
y[,kk] <- mu(fl) + eps
}
# Normalize data (to a zero baseline)
yN <- apply(y, MARGIN=2, FUN=function(y) {
normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median")
})
# The correction factors
rho <- y-yN
print(summary(rho))
# The correction for units with unknown fragment lengths
# equals the median correction factor of all other units
print(summary(rho[hasUnknownFL,]))
# Plot raw data
layout(matrix(1:9, ncol=3))
xlim <- c(0,max(fl, na.rm=TRUE))
ylim <- c(0,max(y, na.rm=TRUE))
xlab <- "Fragment length"
ylab <- expression(log2(theta))
for (kk in 1:I) {
plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
ok <- (is.finite(fl) & is.finite(y[,kk]))
lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2)
}
# Plot normalized data
layout(matrix(1:9, ncol=3))
ylim <- c(-1,1)*max(y, na.rm=TRUE)/2
for (kk in 1:I) {
plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
ok <- (is.finite(fl) & is.finite(y[,kk]))
lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2)
}
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Example 2: Two-enzyme fragment-length normalization of 6 arrays
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
set.seed(0xbeef)
# Number samples
I <- 5
# Number of loci
J <- 3000
# Fragment lengths (two enzymes)
fl <- matrix(0, nrow=J, ncol=2)
fl[,1] <- seq(from=100, to=1000, length.out=J)
fl[,2] <- seq(from=1000, to=100, length.out=J)
# Let 1/2 of the units be on both enzymes
fl[seq(from=1, to=J, by=4),1] <- NA
fl[seq(from=2, to=J, by=4),2] <- NA
# Let some have unknown fragment lengths
hasUnknownFL <- seq(from=1, to=J, by=15)
fl[hasUnknownFL,] <- NA
# Sty/Nsp mixing proportions:
rho <- rep(1, I)
rho[1] <- 1/3; # Less Sty in 1st sample
rho[3] <- 3/2; # More Sty in 3rd sample
# Simulate data
z <- array(0, dim=c(J,2,I))
maxLog2Theta <- 12
for (ii in 1:I) {
# Common effect for both enzymes
mu <- function(fl) {
k <- runif(n=1, min=3, max=5)
mu <- rep(maxLog2Theta, length(fl))
ok <- is.finite(fl)
mu[ok] <- mu[ok] - fl[ok]^{1/k}
mu
}
# Calculate the effect for each data point
for (ee in 1:2) {
z[,ee,ii] <- mu(fl[,ee])
}
# Update the Sty/Nsp mixing proportions
ee <- 2
z[,ee,ii] <- rho[ii]*z[,ee,ii]
# Add random errors
for (ee in 1:2) {
eps <- rnorm(J, mean=0, sd=1/sqrt(2))
z[,ee,ii] <- z[,ee,ii] + eps
}
}
hasFl <- is.finite(fl)
unitSets <- list(
nsp = which( hasFl[,1] & !hasFl[,2]),
sty = which(!hasFl[,1] & hasFl[,2]),
both = which( hasFl[,1] & hasFl[,2]),
none = which(!hasFl[,1] & !hasFl[,2])
)
# The observed data is a mix of two enzymes
theta <- matrix(NA_real_, nrow=J, ncol=I)
# Single-enzyme units
for (ee in 1:2) {
uu <- unitSets[[ee]]
theta[uu,] <- 2^z[uu,ee,]
}
# Both-enzyme units (sum on intensity scale)
uu <- unitSets$both
theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2
# Missing units (sample from the others)
uu <- unitSets$none
theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu))
# Calculate target array
thetaT <- rowMeans(theta, na.rm=TRUE)
targetFcns <- list()
for (ee in 1:2) {
uu <- unitSets[[ee]]
fit <- lowess(fl[uu,ee], log2(thetaT[uu]))
class(fit) <- "lowess"
targetFcns[[ee]] <- function(fl, ...) {
predict(fit, newdata=fl)
}
}
# Fit model only to a subset of the data
subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))
# Normalize data (to a target baseline)
thetaN <- matrix(NA_real_, nrow=J, ncol=I)
fits <- vector("list", I)
for (ii in 1:I) {
lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns,
fragmentLengths=fl, onMissing="median",
subsetToFit=subsetToFit, .returnFit=TRUE)
fits[[ii]] <- attr(lthetaNi, "modelFit")
thetaN[,ii] <- 2^lthetaNi
}
# Plot raw data
xlim <- c(0, max(fl, na.rm=TRUE))
ylim <- c(0, max(log2(theta), na.rm=TRUE))
Mlim <- c(-1,1)*4
xlab <- "Fragment length"
ylab <- expression(log2(theta))
Mlab <- expression(M==log[2](theta/theta[R]))
layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
for (ii in 1:I) {
plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")
# Single-enzyme units
for (ee in 1:2) {
# The raw data
uu <- unitSets[[ee]]
points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1)
}
# Both-enzyme units (use fragment-length for enzyme #1)
uu <- unitSets$both
points(fl[uu,1], log2(theta[uu,ii]), col=3+1)
for (ee in 1:2) {
# The true effects
uu <- unitSets[[ee]]
lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3)
# The estimated effects
fit <- fits[[ii]][[ee]]$fit
lines(fit, col="orange", lwd=3)
muT <- targetFcns[[ee]](fl[uu,ee])
lines(fl[uu,ee], muT, col="cyan", lwd=1)
}
}
# Calculate log-ratios
thetaR <- rowMeans(thetaN, na.rm=TRUE)
M <- log2(thetaN/thetaR)
# Plot normalized data
for (ii in 1:I) {
plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
# Single-enzyme units
for (ee in 1:2) {
# The normalized data
uu <- unitSets[[ee]]
points(fl[uu,ee], M[uu,ii], col=ee+1)
}
# Both-enzyme units (use fragment-length for enzyme #1)
uu <- unitSets$both
points(fl[uu,1], M[uu,ii], col=3+1)
}
ylim <- c(0,1.5)
for (ii in 1:I) {
data <- list()
for (ee in 1:2) {
# The normalized data
uu <- unitSets[[ee]]
data[[ee]] <- M[uu,ii]
}
uu <- unitSets$both
if (length(uu) > 0)
data[[3]] <- M[uu,ii]
uu <- unitSets$none
if (length(uu) > 0)
data[[4]] <- M[uu,ii]
cols <- seq_along(data)+1
plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")
abline(v=0, lty=2)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.