#' Number of collisions under model option 1
#'
#' @description
#' Wrapper function to run CRM calculations under option 1:
#' \itemize{
#' \item Basic model, i.e. flights across collision risk height are
#' uniformly distributed.
#' \item Proportion at collision risk height derived from site survey.
#' }
#'
#' @param flux_factor a vector containing the flux factor for each month
#' @param prop_crh_surv The proportion of flights at collision risk height derived
#' from site survey (\eqn{Q_2R}). Only required for model Option 1.
#' @inheritParams get_collisions_basic
#'
#' @seealso [get_flux_factor()] for calculating the flux factor
#'
#' @return A numeric vector, the expected number of collisions per month based
#' on model option 1
#'
#' @examples
#'
#' flux_fct <- get_flux_factor(
#' n_turbines = 100,
#' rotor_radius = 120,
#' flight_speed = 13.1,
#' bird_dens = c(1.19,0.85,1.05,1.45,1.41,1.45,1.12,1.45,0.93,0.902,1.06,1.23),
#' daynight_hrs = Day_Length(52),
#' noct_activity = 0.5
#' )
#'
#' turb_oper <- data.frame(
#' month = month.abb,
#' prop_oper = runif(12,0.5,0.8)
#' )
#' turb_oper_month <- turb_oper$prop_oper
#'
#' crm_opt1(
#' flux_factor = flux_fct,
#' prop_crh_surv = 0.13,
#' avg_prob_coll = 0.1494609,
#' mth_prop_oper = turb_oper_month,
#' avoidance_rate = 0.989,
#' lac_factor = 0.9998287)
#'
#' @export
crm_opt1 <- function(flux_factor,
prop_crh_surv,
avg_prob_coll,
mth_prop_oper,
avoidance_rate,
lac_factor) {
# Potential number of bird flights transiting through the rotors of the wind
# farm per month, assuming birds take no avoiding action ("Stage B" step in
# Band's documentation)
n_transits_opt1 <- flux_factor * prop_crh_surv
# collisions under basic model
get_collisions_basic(
n_transits = n_transits_opt1,
avg_prob_coll,
mth_prop_oper,
avoidance_rate,
lac_factor
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.