##' Calculate sample size needed for variant detection assuming cross-sectional sampling
##'
##' This function calculates the sample size needed for detecting the presence of a variant
##' given a desired probability of detection and assuming a single, cross-sectional sample of detected infections.
##'
##' @param p_v1 variant prevalence (proportion)
##' @param prob desired probability of detection
##' @param omega probability of sequencing (or other characterization) success
##' @param c_ratio coefficient of detection ratio, calculated as the ratio of the coefficients of variant 1 to variant 2. Default = 1 (no bias)
##' @return scalar of expected sample size
##'
##' @author Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler
##'
##' @examples
##' vartrack_samplesize_detect_xsect(p_v1 = 0.1, prob = 0.95, omega = 0.8, c_ratio = 1)
##'
##' @family variant detection functions
##' @family variant tracking functions
##'
##' @export
vartrack_samplesize_detect_xsect <- function(p_v1, prob, omega, c_ratio = 1) {
if (!all(is.numeric(p_v1), p_v1 > 0 & p_v1 < 1))
stop("Variant prevalence must be numeric and between 0 and 1.")
if (!all(is.numeric(prob), prob > 0 & prob < 1))
stop("Desired probability of detection must be numeric and between 0 and 1.")
if (!all(is.numeric(omega), omega > 0 & omega <= 1))
stop("Sequencing success rate must be numeric and between 0 and 1.")
if (!all(is.numeric(c_ratio), c_ratio > 0))
stop("Coefficient of detection ratio must be numeric and greater than 0")
p_star <- varfreq_obs_freq(p_v1, c_ratio)
n <- (log(1 - prob))/(log(1 - p_star))
n_samples <- n/omega
return(n_samples)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.