library(ngBap)
library(multiedge)
library(partitions)
testModel <- function(p,d,n, bangR, bothR){
b = bangR
bR = bothR
model = randomGraph(p,d,n)
Y = model$Y
bResult = bang(Y, K = 4, level = .01, verbose = F)
fResult = MBANG(t(Y), bResult,tolerance = 0.5)
directEdge = t(bResult$dEdge+diag(dim(Y)[2]))
if(all(directEdge == model$directGraph) & all(bResult$bEdge == model$biEdge)){
b = b + 1
if(compareList(fResult, model$multiEdge)){
bR = bR+1
}
}
corrmulti=length(which(fResult %in% model$multiEdge))
totalmulti=length(model$multiEdge)
if(totalmulti!=0){
percent=corrmulti/totalmulti
}
if(totalmulti==0){
if(length(fResult)==0){
percent=1
}
else{
percent=0
}
}
return(list(bangR=b, bothR=bR,percent=percent))
}
#n = 10000
#n = 50000
n = 25000
bangR = 0
bothR = 0
totalNum = 0
percent=0
p=7
d=12
for(i in 1:100){
temp = testModel(p,d,n, bangR, bothR)
bangR = temp$bangR
bothR = temp$bothR
totalNum = totalNum + 1
percent=percent+temp$percent
}
print(c(bangR,bothR, totalNum,percent))
#n = 10000
#n = 50000
n = 25000
bangR = 0
bothR = 0
totalNum = 0
percent=0
p=7
d=8
for(i in 1:100){
temp = testModel(p,d,n, bangR, bothR)
bangR = temp$bangR
bothR = temp$bothR
totalNum = totalNum + 1
percent=percent+temp$percent
}
print(c(bangR,bothR, totalNum,percent))
#n = 10000
#n = 50000
n = 25000
bangR = 0
bothR = 0
totalNum = 0
percent=0
p=7
d=5
for(i in 1:100){
temp = testModel(p,d,n, bangR, bothR)
bangR = temp$bangR
bothR = temp$bothR
totalNum = totalNum + 1
percent=percent+temp$percent
}
print(c(bangR,bothR, totalNum,percent))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.