Description Usage Arguments Value Author(s) Examples
This function allows us to extract additional information obtained in the simulation process of Population.Modeling (main function). The specified information that can be extracted is explained above.
1 | Sum.Pop.Mod(Pop.Mod, Elements)
|
Pop.Mod |
A list containing the components returned by Population.Modeling function (main function). |
Elements |
A vector specifing which of the following elements must be reported by the function.
|
A list containing the the objects specified before using argument "Elements".
Marta Cousido-Rocha
Santiago Cerviño López
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | # First we introduce the basic parameters to define the population.
# Note that N0 is equal to 10000 individuals, and hence below we are
# consistent with this unit when we introduce the biological and
# stock-recruitment parameters.
ctrPop<-list(years=seq(1980,2020,by=1),niter=2,N0=10000,ages=0:15,minFage=4,
maxFage=7,ts=0,tc=0.5,tseed=NULL)
# Now, we introduce the biological parameters of the population.
# Note that L_inf is in cm, and a and b parameters allow us to relate
# the length in cm with the weight in Kg.
number_ages<-length(ctrPop$ages);number_years<-length(ctrPop$years)
M<-matrix(rep(0.4,number_ages*number_years),ncol = number_years)
colnames(M)<-ctrPop$years
rownames(M)<-ctrPop$ages
ctrBio<-list(M=M,CV_M=0.2, L_inf=124.5, t0=0, k=0.164, CV_L=0.2, CV_LC=0.2, a=4.5*10^(-6), b=3.1049,
a50_Mat=3, ad_Mat=-0.5,CV_Mat=0.2)
# We continue introducing the fishing parameters.
# Below, we have different objects ctrSEL depending on which selectivity function is used.
# Constant selectivity
ctrSEL<-list(type="cte", par=list(cte=0.5),CV_SEL=0.2)
# Logistic selectivity
ctrSEL<-list(type="Logistic", par=list(a50_Sel=1.5, ad_Sel=-1),CV_SEL=0.2)
# Gamma selectivity
ctrSEL<-list(type="Gamma", par=list(gamma=10,alpha=15, beta=0.03),CV_SEL=0.05)
# Andersen selectivity
ctrSEL<-list(type="Andersen", par=list(p1=2,p3=0.2,p4=0.2,p5=40),CV_SEL=0.05)
f=rep(0.5,number_years)
ctrFish<-list(f=f,ctrSEL=ctrSEL)
# Finally, we show below the three possible stock recruitment relationship.
# The values of the parameters of Beverton-Holt Recruitment Model and Ricker
# Recruitment Model are ones suitables when the biomass is measured in Kg and
# the recruitment is measured as number of individuals.
a_BH=10000; b_BH=400; CV_REC_BH=0.2; a_RK=10; b_RK=0.0002; CV_REC_RK=0.2
# If the spawning stock recruiment relationship is constant:
SR<-list(type="cte",par=NULL)
# If the spawning stock recruitment relationship is Beverton-Holt Recruitment Model:
SR<-list(type="BH",par=c(a_BH,b_BH,CV_REC_BH))
# If the spawning stock recruitment relationship is Ricker Recruitment Model:
SR<-list(type="RK",par=c(a_RK,b_RK,CV_REC_RK))
# The following lines allow us to use the described function.
Pop.Mod<-Population.Modeling(ctrPop=ctrPop,ctrBio=ctrBio,ctrFish=ctrFish,SR=SR)
# We extract the F and SSB.
Sum.Pop.Mod(Pop.Mod,c("F","SSB"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.