# --------------------------------------------------------------------------------- #
# -------------------- moretrees initial values function -------------------------- #
# --------------------------------------------------------------------------------- #
#' Here's a brief description.
#' \code{moretrees_init_rand} Randomly generates starting values for moretrees
#' models. Not recommended if the model is converging slowly!
#'
#' @export
#' @useDynLib moretrees
#'
#' @section Model Description:
#' Describe MOReTreeS model and all parameters here.
#'
#' @param dsgn Design list generated by moretrees_design_tree()
#' @param xxT Computed from exposure matrix X
#' @param wwT Computed from covariate matrix W
#' @param update_hyper Update hyperparameters? Default = TRUE.
#' @param hyper_fixed Fixed values of hyperparameters to use if update_hyper = FALSE.
#' If family = "bernoulli", this should be a list including the following elements:
#' tau (prior variance for sparse node coefficients)
#' rho (prior node selection probability for sparse node coefficients)
#' omega (prior variance for non-sparse node coefficients)
#' If family = "gaussian", in addition to the above, the list should also include:
#' sigma2 (variance of residuals)
#' @param hyper_random_init If update_hyper = TRUE, this is a list containing the
#' maximum values of the hyperparameters. Each hyperparameter will be initialised
#' uniformly at random between 0 and the maximum values given by the list elements
#' below. If multiple random restarts are being used, it is recommended
#' to use a large range for these initial values so that the parameter space
#' can be more effectively explored. The list contains the following elements:
#' tau_max (maxmimum of prior sparse node variance)
#' omega_max (maximum of prior non-sparse node variance)
#' sigma2_max (maximum of residual error variance--- for gaussian data only)
#' @param vi_random_init A list with parameters that determine the distributions from
#' which the initial VI parameters will be randomly chosen. All parameters will be randomly
#' selected from independent normal distributions with the standard deviations given by
#' the list elements below. If multiple random restarts are being used, it is recommended
#' to use large standard deviations for these initial values so that the parameter space
#' can be more effectively explored. The list contains the following elements:
#' mu_sd (standard deviation for posterior means of sparse node coefficients)
#' delta_sd (standard deviation for posterior means of non-sparse node coefficients)
#' xi_sd (standard deviation for auxilliary parameters xi--- for bernoulli data only)
#' @return A list containing starting values
#' @examples
#' @family MOReTreeS functions
moretrees_init_W_logistic <- function(X, W, y, A,
initial_values,
outcomes_units,
outcomes_nodes,
ancestors,
xxT, wwT,
update_hyper,
hyper_fixed) {
n <- length(y)
m <- ncol(W)
p <- length(unique(unlist(ancestors)))
pL <- length(ancestors)
K <- ncol(X)
vi_params <- initial_values$vi_params
hyperparams <- initial_values$hyperparams
# Get starting value for omega -----------------------------------
if (update_hyper) {
hyperparams$omega <- hyperparams$tau
} else {
hyperparams$tau <- hyper_fixed$tau
hyperparams$omega <- hyper_fixed$omega
}
# Get starting values for delta ----------------------------------
vi_params$delta <-lapply(1:p, function(i) matrix(0, nrow = m, ncol = 1))
xi <- mapply(`*`, vi_params$prob, vi_params$mu, SIMPLIFY = F)
Xbeta <- numeric(n) + 0
for (u in 1:pL) {
beta_u <- Reduce(`+`, xi[ancestors[[u]]])
Xbeta[outcomes_units[[u]]] <- X[outcomes_units[[u]],
] %*% beta_u
}
wwT_g_eta <- lapply(X = outcomes_units, FUN = xxT_g_eta_fun,
xxT = wwT, g_eta = hyperparams$g_eta, K = m)
for (v in 1:p) {
leaf_descendants <- outcomes_nodes[[v]]
vi_params$Omega_inv[[v]] <- 2 * Reduce(`+`, wwT_g_eta[leaf_descendants]) +
diag(1 / hyperparams$omega, nrow = m)
vi_params$Omega[[v]] <- solve(vi_params$Omega_inv[[v]])
vi_params$Omega_det[v] <- det(vi_params$Omega[[v]])
vi_params$delta[[v]] <- vi_params$delta[[v]] * 0
for (u in leaf_descendants) {
anc_u_mv <- setdiff(ancestors[[u]], v)
units_u <- outcomes_units[[u]]
theta_u_mv <- Reduce(`+`, vi_params$delta[anc_u_mv])
vi_params$delta[[v]] <- vi_params$delta[[v]] + crossprod(W[units_u, , drop = FALSE],
(y[units_u]/2 - 2 * hyperparams$g_eta[units_u] *
(W[units_u, , drop = FALSE] %*% theta_u_mv + Xbeta[units_u])))
}
vi_params$delta[[v]] <- vi_params$Omega[[v]] %*% vi_params$delta[[v]]
}
# Compute initial ELBO
hyperparams <- update_hyperparams_logistic_moretrees(X = X,
W = W,
y = y,
outcomes_units = outcomes_units,
ancestors = ancestors,
n = n, K = K, p = p, m = m,
prob = vi_params$prob, mu = vi_params$mu,
Sigma = vi_params$Sigma, Sigma_det = vi_params$Sigma_det,
tau_t = vi_params$tau_t, delta = vi_params$delta,
Omega = vi_params$Omega, Omega_det = vi_params$Omega_det,
eta = hyperparams$eta, g_eta = hyperparams$g_eta,
omega = hyperparams$omega, tau = hyperparams$tau,
a_rho = vi_params$a_rho, b_rho = vi_params$b_rho,
update_hyper = F)
return(list(vi_params = vi_params, hyperparams = hyperparams))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.