#libraries
#install.packages('WDI')
library(WDI)
library("ff")
library(stringr)
library(plyr)
library(tidyverse)
library(dplyr)
library(tidyr)
library(Hmisc)
library(dtplyr)
library(data.table)
library(tidyfast)
library(glue)
library(lubridate)
library(readr)
library(janitor)
library(tools)
library(stringy)
folder <- "C:/Users/baruj003/Desktop/21/working_R/oxford/CovidClinicalDataProcessor/data"
setwd(folder)
memory.limit(size=120000)
folder <- "C:/Users/marti/OneDrive/Documents/ISARIC/data/2021-05-24/2021-05-24"
setwd(folder)
#'Importing csv files
dm<-read.csv("DM.csv")
colnames(dm) <- tolower(colnames(dm))
rp<-read.csv("RP.csv")
colnames(rp) <- tolower(colnames(rp))
ho<-read.csv("HO.csv")
colnames(ho) <- tolower(colnames(ho))
mb<-read.csv("Internal_MB_2021-05-24_v2.csv")
colnames(mb) <- tolower(colnames(mb))
vs<-read.csv("Internal_VS_2021-05-24_v2.csv")
colnames(vs) <- tolower(colnames(vs))
save(vs,file="vs.rda")
lb<-read.csv("LB.csv")
colnames(lb) <- tolower(colnames(lb))
save(lb,file="lb.rda")
ds<-read.csv("DS.csv")
colnames(ds) <- tolower(colnames(ds))
sa<-
read_csv(
"SA.csv",
col_names = TRUE,
col_types = NULL,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
#quote = quote,
comment = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
guess_max = min(8000000, 12000000000),
progress = show_progress(),
skip_empty_rows = TRUE
)
sa <- read.csv.ffdf(file="SA.csv", header=TRUE, VERBOSE=TRUE, quote = ,
first.rows=1000, next.rows=50000,
colClasses = c(rep("factor", 66), rep("NULL", 66)), na = '')
sa<-as.data.frame(sa)
colnames(sa) <- tolower(colnames(sa))
save(sa,file="sa.rda")
int <- read.csv.ffdf(file="IN.csv", header=TRUE, VERBOSE=TRUE, quote = '"',
first.rows=1000, next.rows=50000,
colClasses = c(rep("factor", 66), rep("NULL", 66)), na = '')
int<-as.data.frame(int)
colnames(int) <- tolower(colnames(int))
save(int,file="int.rda")
int<-
read_csv(
"IN.csv",
col_names = TRUE,
col_types = NULL,
locale = default_locale(),
na = c("", "NA"),
quoted_na = TRUE,
quote = "\"",
comment = "",
trim_ws = TRUE,
skip = 0,
n_max = Inf,
guess_max = min(8000000, 25000000),
progress = show_progress(),
skip_empty_rows = TRUE
)
colnames(int) <- tolower(colnames(int))
save(int,file="int.rda")
###set date pull
date_pull<-as_date("2021-05-24")
###calling data import functions
imp_dm <- import.demographic.data(dm, dtplyr.step = FALSE)
save(imp_dm, file = "imp_dm.rda")
country<-imp_dm%>%tabyl(country)
write.table(country, "country.csv", sep=",", row.names=F, na="")
imp_mb <- import.microb.data(mb, dtplyr.step = FALSE)
save(imp_mb, file = "imp_mb.rda")
imp_rp <- process.pregnancy.data(rp, dtplyr.step = FALSE)
save(imp_rp, file = "imp_rp.rda")
load("sa.rda")
imp_sa<-import.symptom.and.comorbidity.data(sa, dtplyr.step = FALSE)
save(imp_sa, file = "imp_sa.rda")
load("imp_sa.rda")
imp_comorb<-process.comorbidity.data(imp_sa, minimum=100, dtplyr.step = FALSE)
save(imp_comorb, file = "imp_comorb.rda")
imp_symptom<-process.symptom.data(imp_sa, minimum=100, dtplyr.step = FALSE)
save(imp_symptom, file = "imp_symptom.rda")
load("int.rda")
imp_int<-process.treatment.data(int, dtplyr.step = FALSE)
save(imp_int, file = "imp_int.rda")
imp_treat<-process.common.treatment.data(imp_int, minimum=10, dtplyr.step = FALSE)
save(imp_treat, file = "imp_treat.rda")
imp_icu<- process.ICU.data(ho, dtplyr.step = FALSE)
save(imp_icu, file = "imp_icu.rda")
imp_vs<- process.vital.sign.data(vs, dtplyr.step = FALSE)
save(imp_vs, file = "imp_vs.rda")
imp_lb <- process.laboratory.data(lb, dtplyr.step = FALSE)
save(imp_lb, file = "imp_lb.rda")
imp_ds <-process.outcome.data(ds, dtplyr.step = FALSE)
save(imp_ds, file = "imp_ds.rda")
tab<-tabyl(imp_ds$outcome)
imp_treat_icu<-process.treatment.icu.data(imp_int, imp_icu,imp_dm,imp_ds, minimum=10,dtplyr.step = FALSE)
save(imp_treat_icu, file = "imp_treat_icu.rda")
load(file="imp_dm.rda")
load(file="imp_mb.rda")
load(file="imp_comorb.rda")
load(file="imp_rp.rda")
load(file="imp_symptom.rda")
load(file="imp_treat.rda")
load(file="imp_icu.rda")
load(file="imp_treat_icu.rda")
load(file="imp_lb.rda")
load(file="imp_vs.rda")
load(file="imp_ds.rda")
#########joining all data
import.tbl<-imp_dm%>%
left_join(imp_mb, by = c("usubjid"))%>%
left_join(imp_comorb, by = c("usubjid"))%>%
left_join(imp_rp, by = c("usubjid"))%>%
left_join(imp_symptom, by = c("usubjid"))%>%
left_join(imp_treat, by = c("usubjid"))%>%
left_join(imp_icu, by = c("usubjid"))%>%
left_join(imp_treat_icu, by = c("usubjid"))%>%
left_join(imp_lb, by = c("usubjid"))%>%
left_join(imp_vs, by = c("usubjid"))%>%
left_join(imp_ds, by = c("usubjid"))
save(import.tbl, file = "import.tbl.rda")
#########calling preprocessing function
load("import.tbl.rda")
prepr.tbl<-data.preprocessing(import.tbl)
list_2<-as.data.frame(colnames(prepr.tbl))
save(prepr.tbl, file = "prepr.tbl.all.rda")
rmv<-exclud.sympt.comorb.tret(import.tbl)
prepr.tbl<-prepr.tbl%>%select(-c(all_of(rmv)))
list_2<-as.data.frame(colnames(prepr.tbl))
#income<-imp_dm%>%select(usubjid,income)
#prepr.tbl<-prepr.tbl%>%left_join(income)
save(prepr.tbl, file = "prepr.tbl.rda")
load("prepr.tbl.rda")
test<-prepr.tbl%>%select(-c(cov_det_cronavir,
cov_det_sarscov2,
cov_id_cronavir,
cov_id_sarscov2,
cov_det_id,
clin_diag_covid_19))%>%
left_join(imp_mb)%>%
left_join(covid_clinic_diagn)
prepr.tbl<-test
exclusion<-import.tbl%>%tabyl(cov_det_id,clin_diag_covid_19)
write.table(exclusion, "exclusion.csv", sep=",", row.names=F, na="")
#########if needed launching randomization function on the imported data and then preprocess the data
random.import.tbl<-randomization(import.tbl)
save(random.import.tbl, file = "random.import.tbl.rda")
load("random.import.tbl.rda")
import.tbl<-random.import.tbl
random.prepr.tbl<-data.preprocessing(import.tbl)
save(random.prepr.tbl, file = "random.prepr.tbl.rda")
load("prepr.tbl.rda")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.