Description Usage Arguments Details Author(s) References See Also Examples
View source: R/fit_node_states_distr.R
Fitting univariate distributions to the posterior distribution of a Bayesian network node.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
bn |
an object of class bn.fit. |
node |
character string, the label of the node which conditional distribution is of interest. |
op |
a vector of character strings, the type of returned value: either probabilities or raw data sampled from the posterior distribution |
distr |
A character string |
method |
A character string coding for the fitting method:
|
start |
A named list giving the initial values of parameters of the named distribution
or a function of data computing initial values and returning a named list.
This argument may be omitted (default) for some distributions for which reasonable
starting values are computed (see the 'details' section of |
fix.arg |
An optional named list giving the values of fixed parameters of the named distribution
or a function of data computing (fixed) parameter values and returning a named list.
Parameters with fixed value are thus NOT estimated by this maximum likelihood procedure.
The use of this argument is not possible if |
discrete |
If TRUE, the distribution is considered as discrete.
If |
keepdata |
a logical. If |
keepdata.nb |
When |
include_relatives |
logical Should parents or ancestors, depending on the the argument n_generation, should be included in the query? If TRUE, the default, these will be internally involved in constructing the evidence argument. |
n_run |
integer specifying the number of of model run. Default is 1000. |
... |
Further arguments to be passed to generic functions, or to one of the functions
|
see fitdist
.
Issoufou Liman
Marie Laure Delignette-Muller, Christophe Dutang (2015). fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software, 64(4), 1-34. http://www.jstatsoft.org/v64/i04/.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | library (gRain)
library(bnlearn)
## setting a bayesian network with gRain
Soil_type <- cptable (~Soil_type, values = c(0.05, 0.55, 0.4),
levels = c('Sandy', 'Loamy', 'Clayey'))
Manure_application <- cptable(~Manure_application, values = c(0.3, 0.7),
levels = c('FALSE', 'TRUE'))
Soil_water_holding_capacity_tmp <- make_gRain_CPT(
parent_effects = list(c(0, 2.5, 3), c(0, 2)),
parent_weights = c(2,1),
b = 3,
child_prior = c(0.2,0.5,0.3),
child_states = c('Low', 'Medium', 'High'),
parent_states = list(c('Sandy', 'Loamy', 'Clayey'), c('FALSE', 'TRUE'))
)
Soil_water_holding_capacity_values <- Soil_water_holding_capacity_tmp$values
Soil_water_holding_capacity_levels <- Soil_water_holding_capacity_tmp$levels
Soil_water_holding_capacity <- cptable (
~Soil_water_holding_capacity|Soil_type:Manure_application,
values = Soil_water_holding_capacity_values,
levels = Soil_water_holding_capacity_levels)
## Compile conditional probability tables
network <- compileCPT(list(Soil_type, Manure_application, Soil_water_holding_capacity))
## Graphical Independence Network ####
network <- grain(network)
## Use grain object (gRain package)
fit_node_states_distr (bn = network, node = 'Soil_water_holding_capacity', gof='KS')
## converting the grain bayesian network to bn.fit
network_bn_fit <- as.bn.fit(network)
## Use bn.fit object (bnlearn package)
fit_node_states_distr (bn = network_bn_fit,
node = 'Soil_water_holding_capacity', distr = c('beta', 'norm', 'gamma'))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.