calcAlleleCnvBoundaries: Use HMM to identify potential CNV boundaries based on...

Description Usage Arguments Examples

View source: R/HoneyBADGER_allele.R

Description

Use HMM to identify potential CNV boundaries based on patterns of persistent allelic imbalance

Usage

1
2
3
calcAlleleCnvBoundaries(r.maf, n.sc, l.maf, n.bulk, snps, geneFactor,
  min.traverse = 3, t = 1e-06, pd = 0.1, pn = 0.45, min.num.snps = 5,
  trim = 0.1, verbose = FALSE, ...)

Arguments

r.maf

Matrix of alt allele count in single cells.

n.sc

Matrix of site coverage count in single cells.

l.maf

Vector of alt allele count in pooled single cells or bulk.

n.bulk

Vector of site coverage count in pooled single cells or bulk.

snps

SNP annotations

geneFactor

Output of setGeneFactors

min.traverse

Depth traversal to look for subclonal CNVs. Higher depth, potentially smaller subclones detectable. (default: 3)

t

HMM transition parameter. Higher number, more transitions. (default: 1e-6)

pd

Probability of lesser allele detection in deleted region (ie. due to error)

pn

Probability of lesser allele detection in neutral region (ie. 0.5 - error rate)

min.num.snps

Minimum number of snps in candidate CNV

trim

Trim boundary SNPs

verbose

Verbosity(default: FALSE)

...

Additional parameters to pass to calcAlleleCnvProb

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
{
data(r)
data(cov.sc)
allele.mats <- setAlleleMats(r, cov.sc)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
geneFactor <- setGeneFactors(allele.mats$snps, TxDb.Hsapiens.UCSC.hg19.knownGene)
potentialCnvs <- calcAlleleCnvBoundaries(allele.mats$r.maf, allele.mats$n.sc, 
    allele.mats$l.maf, allele.mats$n.bulk, allele.mats$snps, geneFactor)
## visualize affected regions
plotAlleleProfile(allele.mats$r.maf, allele.mats$n.sc, allele.mats$l.maf, 
    allele.mats$n.bulk, allele.mats$snps, region=potentialCnvs$region)
}

JEFworks/HoneyBADGER documentation built on July 24, 2021, 3:01 p.m.