Description Usage Arguments Examples
View source: R/HoneyBADGER_allele.R
Use HMM to identify potential CNV boundaries based on patterns of persistent allelic imbalance
1 2 3 | calcAlleleCnvBoundaries(r.maf, n.sc, l.maf, n.bulk, snps, geneFactor,
min.traverse = 3, t = 1e-06, pd = 0.1, pn = 0.45, min.num.snps = 5,
trim = 0.1, verbose = FALSE, ...)
|
r.maf |
Matrix of alt allele count in single cells. |
n.sc |
Matrix of site coverage count in single cells. |
l.maf |
Vector of alt allele count in pooled single cells or bulk. |
n.bulk |
Vector of site coverage count in pooled single cells or bulk. |
snps |
SNP annotations |
geneFactor |
Output of |
min.traverse |
Depth traversal to look for subclonal CNVs. Higher depth, potentially smaller subclones detectable. (default: 3) |
t |
HMM transition parameter. Higher number, more transitions. (default: 1e-6) |
pd |
Probability of lesser allele detection in deleted region (ie. due to error) |
pn |
Probability of lesser allele detection in neutral region (ie. 0.5 - error rate) |
min.num.snps |
Minimum number of snps in candidate CNV |
trim |
Trim boundary SNPs |
verbose |
Verbosity(default: FALSE) |
... |
Additional parameters to pass to calcAlleleCnvProb |
1 2 3 4 5 6 7 8 9 10 11 12 | {
data(r)
data(cov.sc)
allele.mats <- setAlleleMats(r, cov.sc)
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
geneFactor <- setGeneFactors(allele.mats$snps, TxDb.Hsapiens.UCSC.hg19.knownGene)
potentialCnvs <- calcAlleleCnvBoundaries(allele.mats$r.maf, allele.mats$n.sc,
allele.mats$l.maf, allele.mats$n.bulk, allele.mats$snps, geneFactor)
## visualize affected regions
plotAlleleProfile(allele.mats$r.maf, allele.mats$n.sc, allele.mats$l.maf,
allele.mats$n.bulk, allele.mats$snps, region=potentialCnvs$region)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.