#### Dodać to /\ do "DESCRIPTION"!!!!!!!!!!!!!!!!!!!!!!!!!!!
svmCorolla <- function(columns, train, kernel = "radial"){
model_svm = svm(Price~., data=train[,columns],
kernel = kernel,
type="nu-regression")
return (model_svm)
}
#Dane obrobione
#columns <- dataCorolla()$columns
#train <- dataCorolla()$train
#test <- dataCorolla()$test
# Dane surowe
#columns <- dataCorolla(raw="true")$columns
#train <- dataCorolla(raw="true")$train
#test <- dataCorolla(raw="true")$test
#svm_radial = svmCorolla(columns, train)
#predicted = predict(svm_radial, test)
#RMSE(test$Price, predicted) #1145.888 | 1258.175 surowe
#------------------------------
#svm_polynomial = svmCorolla(columns, train, kernel = "polynomial")
#predicted_p = predict(svm_polynomial, test)
#RMSE(test$Price, predicted_p) #1372.606 | 1579.067
#-------------------------------
#svm_sigmoid = svmCorolla(columns, train, kernel = "sigmoid")
#predicted_sigmoid= predict(svm_sigmoid, test)
#RMSE(test$Price, predicted_sigmoid) #28884.79 | 20713.58
#----------------------------------
#svm_linear = svmCorolla(columns, train, kernel = "linear")
#predicted_linear= predict(svm_linear, test)
#RMSE(test$Price, predicted_linear) #1110.204 | 1113.275
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.