library(e1071)
#### Dodaæ to /\ do "DESCRIPTION"!!!!!!!!!!!!!!!!!!!!!!!!!!!
svmIris <- function(columns, train, kernel = "radial"){
model_svm = svm(Sepal.Length~., data=train[,columns],
kernel = kernel,
type="nu-regression")
return (model_svm)
}
# #Dane obrobione obrobione | surowe
# columns <- dataIris()$columns
# train <- dataIris()$train
# test <- dataIris()$test
#
# # Dane surowe
# columns <- dataIris(raw="true")$columns
# train <- dataIris(raw="true")$train
# test <- dataIris(raw="true")$test
#
# svm_radial = svmIris(columns, train)
#
# predicted = predict(svm_radial, test)
#
# RMSE(test$Sepal.Length, predicted) # 0.3272615 | 0.3491633 surowe
#
# #------------------------------
# svm_polynomial = svmIris(columns, train, kernel = "polynomial")
#
# predicted_p = predict(svm_polynomial, test)
#
# RMSE(test$Sepal.Length, predicted_p) # 0.2831165 | 0.3782467
#
#
# #-------------------------------
# svm_sigmoid = svmIris(columns, train, kernel = "sigmoid")
#
# predicted_sigmoid= predict(svm_sigmoid, test)
#
# RMSE(test$Sepal.Length, predicted_sigmoid) # 1.019071 | 1.422121
#
#
# #----------------------------------
# svm_linear = svmIris(columns, train, kernel = "linear")
#
# predicted_linear= predict(svm_linear, test)
#
# RMSE(test$Sepal.Length, predicted_linear) #0.2011303 | 0.2993042
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.