svmMtcars <- function(columns, train, kernel = "radial"){
model_svm = svm(qsec~., data=train[,columns],
kernel = kernel,
type="nu-regression")
return (model_svm)
}
#Dane obrobione
#columns <- dataMtcars()$columns
#train <- dataMtcars()$train
#test <- dataMtcars()$test
# Dane surowe
#columns <- dataMtcars(raw="true")$columns
#train <- dataMtcars(raw="true")$train
#test <- dataMtcars(raw="true")$test
#svm_radial = svmMtcars(columns, train)
#predicted = predict(svm_radial, test)
#RMSE(test$qsec, predicted) #1.91813 | 1.980707
#------------------------------
#svm_polynomial = svmMtcars(columns, train, kernel = "polynomial")
#predicted_p = predict(svm_polynomial, test)
#RMSE(test$qsec, predicted_p) #4.424246 | 4.167068
#-------------------------------
#svm_sigmoid = svmMtcars(columns, train, kernel = "sigmoid")
#predicted_sigmoid= predict(svm_sigmoid, test)
#RMSE(test$qsec, predicted_sigmoid) #1.582125 | 1.471263
#----------------------------------
#svm_linear = svmMtcars(columns, train, kernel = "linear")
#predicted_linear= predict(svm_linear, test)
#RMSE(test$qsec, predicted_linear) #0.9736886| 0.6156598
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.