tests/testthat/_snaps/vascr_anova.md

Can make a significance table

Code
  vascr_make_significance_table(growth.df, 50, "R", 4000, 0.95)
Output
  # A tibble: 8 x 2
    Sample                       Label                                            
    <chr>                        <chr>                                            
  1 0_cells x HCMEC D3_line      "15,000_cells x HCMEC D3_line **\n20,000_cells x~
  2 10,000_cells x HCMEC D3_line "25,000_cells x HCMEC D3_line **\n30,000_cells x~
  3 15,000_cells x HCMEC D3_line "0_cells x HCMEC D3_line **\n30,000_cells x HCME~
  4 20,000_cells x HCMEC D3_line "0_cells x HCMEC D3_line ***\n30,000_cells x HCM~
  5 25,000_cells x HCMEC D3_line "0_cells x HCMEC D3_line ****\n10,000_cells x HC~
  6 30,000_cells x HCMEC D3_line "0_cells x HCMEC D3_line ****\n10,000_cells x HC~
  7 35,000_cells x HCMEC D3_line "0_cells x HCMEC D3_line ****\n10,000_cells x HC~
  8 5,000_cells x HCMEC D3_line  "20,000_cells x HCMEC D3_line *\n25,000_cells x ~
Code
  vascr_make_significance_table(growth.df, 50, "R", 4000, 0.95, format = "Tukey_data")
Output
  # A tibble: 31 x 9
     term       group1       group2 null.value estimate conf.low conf.high   p.adj
   * <chr>      <chr>        <chr>       <dbl>    <dbl>    <dbl>     <dbl>   <dbl>
   1 Experiment 1 : Experim~ 2 : E~          0    -24.8    -79.3      29.8 4.79e-1
   2 Experiment 1 : Experim~ 3 : E~          0    -91.8   -146.      -37.3 1.61e-3
   3 Experiment 2 : Experim~ 3 : E~          0    -67.1   -122.      -12.6 1.59e-2
   4 Sample     0_cells x H~ 10,00~          0    109.     -11.1     229.  8.84e-2
   5 Sample     0_cells x H~ 15,00~          0    158.      37.9     278.  6.78e-3
   6 Sample     0_cells x H~ 20,00~          0    202.      82.2     322.  7   e-4
   7 Sample     0_cells x H~ 25,00~          0    268.     148.      388.  3.4 e-5
   8 Sample     0_cells x H~ 30,00~          0    344.     224.      464.  1.76e-6
   9 Sample     0_cells x H~ 35,00~          0    424.     304.      544.  1.25e-7
  10 Sample     0_cells x H~ 5,000~          0     54.9    -65.1     175.  7.35e-1
  # i 21 more rows
  # i 1 more variable: p.adj.signif <chr>

Vascr LM

Code
  vascr_lm(growth.df, "R", 4000, 100)
Output

  Call:
  lm(formula = formula, data = data.df)

  Coefficients:
                         (Intercept)           Experiment2 : Experiment2  
                              302.97                              -81.22  
           Experiment3 : Experiment3  Sample10,000_cells + HCMEC D3_line  
                             -123.63                              318.87  
  Sample15,000_cells + HCMEC D3_line  Sample20,000_cells + HCMEC D3_line  
                              366.04                              365.43  
  Sample25,000_cells + HCMEC D3_line  Sample30,000_cells + HCMEC D3_line  
                              357.85                              349.05  
  Sample35,000_cells + HCMEC D3_line   Sample5,000_cells + HCMEC D3_line  
                              320.43                              140.83

Vascr_residuals

Code
  vascr_residuals(growth.df, "R", "4000", 100)
Output
            1           2           3           4           5           6 
  -71.2600254  15.1556080  56.1044174  43.5198942   0.2053120 -43.7252062 
            7           8           9          10          11          12 
   41.2513697 -11.8259343 -29.4254354  29.3639323 -31.1078063   1.7438740 
           13          14          15          16          17          18 
   17.5040807 -16.5831750  -0.9209057   3.8446770  -4.2829199   0.4382429 
           19          20          21          22          23          24 
  -21.3740220  -1.3609699  22.7349919 -42.8499065  49.7998853  -6.9499789

Vascr Shapiro test checks

Code
  vascr_shapiro(growth.df, "R", 4000, 100)
Output

    Shapiro-Wilk normality test

  data:  aov_residuals
  W = 0.97874, p-value = 0.8716

Levene test

Code
  vascr_levene(growth.df, "R", 4000, 100)
Output
  # A tibble: 1 x 4
      df1   df2 statistic     p
    <int> <int>     <dbl> <dbl>
  1     7    16     0.484 0.832

Tukey tests

Code
  vascr_tukey(growth.df, "R", 4000, 100)
Output
  # A tibble: 31 x 9
     term       group1       group2 null.value estimate conf.low conf.high   p.adj
     <chr>      <chr>        <chr>       <dbl>    <dbl>    <dbl>     <dbl>   <dbl>
   1 Experiment 1 : Experim~ 2 : E~          0    -81.2   -134.      -28.5 3.33e-3
   2 Experiment 1 : Experim~ 3 : E~          0   -124.    -176.      -70.9 7.24e-5
   3 Experiment 2 : Experim~ 3 : E~          0    -42.4    -95.2      10.4 1.25e-1
   4 Sample     0_cells x H~ 10,00~          0    319.     203.      435.  2.99e-6
   5 Sample     0_cells x H~ 15,00~          0    366.     250.      482.  5.41e-7
   6 Sample     0_cells x H~ 20,00~          0    365.     249.      482.  5.53e-7
   7 Sample     0_cells x H~ 25,00~          0    358.     242.      474.  7.19e-7
   8 Sample     0_cells x H~ 30,00~          0    349.     233.      465.  9.8 e-7
   9 Sample     0_cells x H~ 35,00~          0    320.     204.      437.  2.81e-6
  10 Sample     0_cells x H~ 5,000~          0    141.      24.7     257.  1.3 e-2
  # i 21 more rows
  # i 1 more variable: p.adj.signif <chr>
Code
  vascr_tukey(growth.df, "R", 4000, 100, raw = TRUE)
Output
  # A tibble: 31 x 9
     term       group1       group2 null.value estimate conf.low conf.high   p.adj
   * <chr>      <chr>        <chr>       <dbl>    <dbl>    <dbl>     <dbl>   <dbl>
   1 Experiment 1 : Experim~ 2 : E~          0    -81.2   -134.      -28.5 3.33e-3
   2 Experiment 1 : Experim~ 3 : E~          0   -124.    -176.      -70.9 7.24e-5
   3 Experiment 2 : Experim~ 3 : E~          0    -42.4    -95.2      10.4 1.25e-1
   4 Sample     0_cells x H~ 10,00~          0    319.     203.      435.  2.99e-6
   5 Sample     0_cells x H~ 15,00~          0    366.     250.      482.  5.41e-7
   6 Sample     0_cells x H~ 20,00~          0    365.     249.      482.  5.53e-7
   7 Sample     0_cells x H~ 25,00~          0    358.     242.      474.  7.19e-7
   8 Sample     0_cells x H~ 30,00~          0    349.     233.      465.  9.8 e-7
   9 Sample     0_cells x H~ 35,00~          0    320.     204.      437.  2.81e-6
  10 Sample     0_cells x H~ 5,000~          0    141.      24.7     257.  1.3 e-2
  # i 21 more rows
  # i 1 more variable: p.adj.signif <chr>

Dunnett test works

Code
  vascr_dunnett(growth.df, "R", 4000, 50, 8)
Output
  # A tibble: 7 x 17
     Time Unit  Frequency Sample   Instrument    sd totaln     n   min   max Well 
    <dbl> <fct>     <dbl> <chr>    <chr>      <dbl>  <int> <int> <dbl> <dbl> <chr>
  1    50 R          4000 10,000_~ ECIS        27.5      9     3  321.  376. F01,~
  2    50 R          4000 15,000_~ ECIS        42.4      9     3  350.  432. E01,~
  3    50 R          4000 20,000_~ ECIS        52.5      9     3  394.  498. D01,~
  4    50 R          4000 25,000_~ ECIS        81.0      9     3  428.  590. C01,~
  5    50 R          4000 30,000_~ ECIS       108.       9     3  464.  675. B01,~
  6    50 R          4000 35,000_~ ECIS        79.0      9     3  574.  721. A01,~
  7    50 R          4000 5,000_c~ ECIS        20.4      9     3  281.  318. G01,~
  # i 6 more variables: Value <dbl>, Experiment <chr>, sem <dbl>, P <dbl>,
  #   Label <chr>, P_round <chr>
Code
  vascr_dunnett(growth.df, "R", 4000, list(50, 100), 8)
Output
  # A tibble: 14 x 17
      Time Unit  Frequency Sample  Instrument    sd totaln     n   min   max Well 
     <dbl> <fct>     <dbl> <chr>   <chr>      <dbl>  <int> <int> <dbl> <dbl> <chr>
   1    50 R          4000 10,000~ ECIS        27.5      9     3  321.  376. F01,~
   2    50 R          4000 15,000~ ECIS        42.4      9     3  350.  432. E01,~
   3    50 R          4000 20,000~ ECIS        52.5      9     3  394.  498. D01,~
   4    50 R          4000 25,000~ ECIS        81.0      9     3  428.  590. C01,~
   5    50 R          4000 30,000~ ECIS       108.       9     3  464.  675. B01,~
   6    50 R          4000 35,000~ ECIS        79.0      9     3  574.  721. A01,~
   7    50 R          4000 5,000_~ ECIS        20.4      9     3  281.  318. G01,~
   8   100 R          4000 10,000~ ECIS       106.       9     3  454.  665. F01,~
   9   100 R          4000 15,000~ ECIS        99.5      9     3  516.  710. E01,~
  10   100 R          4000 20,000~ ECIS        84.7      9     3  547.  698. D01,~
  11   100 R          4000 25,000~ ECIS        75.5      9     3  536.  678. C01,~
  12   100 R          4000 30,000~ ECIS        65.2      9     3  529.  656. B01,~
  13   100 R          4000 35,000~ ECIS        41.6      9     3  523.  602. A01,~
  14   100 R          4000 5,000_~ ECIS        54.3      9     3  313.  412. G01,~
  # i 6 more variables: Value <dbl>, Experiment <chr>, sem <dbl>, P <dbl>,
  #   Label <chr>, P_round <chr>
Code
  vascr_dunnett(growth.df, "R", 4000, 50, "0_cells + HCMEC D3_line")
Output
  # A tibble: 7 x 17
     Time Unit  Frequency Sample   Instrument    sd totaln     n   min   max Well 
    <dbl> <fct>     <dbl> <chr>    <chr>      <dbl>  <int> <int> <dbl> <dbl> <chr>
  1    50 R          4000 10,000_~ ECIS        27.5      9     3  321.  376. F01,~
  2    50 R          4000 15,000_~ ECIS        42.4      9     3  350.  432. E01,~
  3    50 R          4000 20,000_~ ECIS        52.5      9     3  394.  498. D01,~
  4    50 R          4000 25,000_~ ECIS        81.0      9     3  428.  590. C01,~
  5    50 R          4000 30,000_~ ECIS       108.       9     3  464.  675. B01,~
  6    50 R          4000 35,000_~ ECIS        79.0      9     3  574.  721. A01,~
  7    50 R          4000 5,000_c~ ECIS        20.4      9     3  281.  318. G01,~
  # i 6 more variables: Value <dbl>, Experiment <chr>, sem <dbl>, P <dbl>,
  #   Label <chr>, P_round <chr>


JamesHucklesby/vascr documentation built on July 16, 2025, 8:16 p.m.