Description Usage Arguments Value Author(s) References Examples
This function is the core function to test whether a query gene is statistically associated with a set of seed genes.
1 | geneScoring(Nseed, Cg, Pfcutoff = 0.1)
|
Nseed |
Number of seed genes |
Cg |
Pre-calcuated weight for this gene |
Pfcutoff |
Percentage of top genes considered, should be less than 0.1. |
p-value
Jiantao Shi
Jiantao Shi: NetGPA, a package for network-based gene prioritization analysis.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # load package and data
library("NetGPA")
data("Example_NetGPA")
# load data base
data(text_2006_12_NetGPA)
# Compare FGF pathway and a random gene set
exampleSeedFGFR <- Example_NetGPA$Cancer_GeneSet[["SIGNALING_BY_FGFR"]]
pGenes <- intersect(exampleSeedFGFR, colnames(text_2006_12_NetGPA))
rGenes <- sample(colnames(text_2006_12_NetGPA), length(pGenes))
res <- NetGPA(as.list(pGenes), pGenes, text_2006_12_NetGPA, progressBar = FALSE)
pTable <- res$queryTable
pTable$group <- "Pathway"
res <- NetGPA(as.list(rGenes), rGenes, text_2006_12_NetGPA, progressBar = FALSE)
rTable <- res$queryTable
rTable$group <- "Random"
mT <- rbind(pTable, rTable)
boxplot(-log10(queryP)~group, data = mT, ylab = "-log10(p-value)")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.