getSigmaUY: Returns the covariance matrix of t(U) if model is simple...

View source: R/latentModel.R

getSigmaUYR Documentation

Returns the covariance matrix of t(U) if model is simple return the diagonal vector @param theta (3 x 1) \sigma_Y, \tau, \sigma_U @param likobj (list) contaning: Yu (n x 1) the data (modifed by U in the SVD(X)) Xu (n x k + 1) the covariates, for \beta, \mu_0 (modifed by U in the SVD(X)) H (n x n_c) covariance matrix HHt (n x n) SVDX (list) singular value decomposition of X

Description

Returns the covariance matrix of t(U) if model is simple return the diagonal vector @param theta (3 x 1) \sigma_Y, \tau, \sigma_U @param likobj (list) contaning: Yu (n x 1) the data (modifed by U in the SVD(X)) Xu (n x k + 1) the covariates, for \beta, \mu_0 (modifed by U in the SVD(X)) H (n x n_c) covariance matrix HHt (n x n) SVDX (list) singular value decomposition of X

Usage

getSigmaUY(theta, likObj)

JonasWallin/PolyMixed documentation built on April 8, 2023, 4:26 p.m.