iterativeForwardSelectR | R Documentation |
Iterative procedure for selecting covariates uder base model: Y \sim N(X_k\beta + X \gamma, \sigma_Y^2 I_n \times n) \gamma \sim N(u, \tau^2 I_p \times p) u = [u_1,...,u_n_c] u_i \sim N(\mu_0, \sigma^2_u 1 In e
iterativeForwardSelectR(
Y,
X,
model = c("simple", "constant"),
kmax = NULL,
nc = NULL,
X_rem = NULL,
critval = qnorm(1 - (1 - 0.95)/2),
likelihood_method = FALSE,
silent = 1
)
Y |
- (n x 1) observations |
X |
- (n x p) covariates |
model |
- (string) simple - simpliefed model (sigma^2_u = 0) constant - the full model |
nc |
- (int) number of chromosones |
X_rem |
- (p< x 1) number of columns X that should not be checked (like duplicates) |
critval |
- (double) value to minimum accepted level |
likelihood_method |
- (bool) use highest likelihood to select coeff |
silent |
(int) 0 - no output 1 - result of each loop 2 - with stars for iteration |
Kmax |
- (int) maximum number of iterations |
beta - (p x 1) vector with the selected betas (and values)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.