Description Usage Arguments Value
View source: R/STGmarkerFinder.R
Use STG (stochastic gates) to select genes that separate each DA region from the rest of the cells. For a full description of the algorithm, see Y. Yamada, O. Lindenbaum, S. Negahban, and Y. Kluger. Feature selection using stochastic gates. arXiv preprint arXiv:1810.04247, 2018.
1 2 3 | STGmarkerFinder(X, cell.idx, da.region.label, da.regions.to.run = NULL,
lambda = 1.2, n.runs = 5, return.model = F,
python.use = "/usr/bin/python", GPU = "")
|
X |
matrix, normalized expression matrix of all cells in the dataset, genes are in rows, rownames must be gene names |
cell.idx |
result "da.cell.idx" from the output of function getDAcells |
da.region.label |
result "cluster.res" from the output of function getDAregion |
da.regions.to.run |
numeric (vector), which DA regions to run the marker finder, default is to run all regions |
lambda |
numeric, regularization parameter that weights the number of selected genes, a larger lambda leads to fewer genes, default 1.2 |
n.runs |
integer, number of runs to run the model, default 5 |
return.model |
a logical value to indicate whether to return the actual model of STG |
python.use |
character string, the Python to use, default "/usr/bin/python" |
GPU |
which GPU to use, default ”, using CPU |
a list of results:
a list of data.frame with markers for each DA region
a numeric vector showing mean accuracy for each DA region
a list of model for each DA region, each model contains:
the model of STG of the final run
features used to train the model
the selected features of the final run
the linear prediction value for each cell from the model
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.