getDAcells: DA-seq Step 1 & Step 2: select DA cells

Description Usage Arguments Value

View source: R/getDAcells.R

Description

Step 1: compute a multiscale score measure for each cell of its k-nearest-neighborhood for multiple values of k. Step 2: train a logistic regression classifier based on the multiscale score measure and retain cells that may reside in DA regions.

Usage

1
2
3
4
getDAcells(X, cell.labels, labels.1, labels.2, k.vector, k.folds = 10,
  n.runs = 10, pred.thres = c(0.05, 0.95), do.plot = T,
  plot.embedding = NULL, size = 0.5, python.use = "/usr/bin/python",
  GPU = "")

Arguments

X

size N-by-p matrix, input merged dataset of interest after dimension reduction

cell.labels

size N vector, labels for each input cell

labels.1

vector, label name(s) that represent condition 1

labels.2

vector, label name(s) that represent condition 2

k.vector

vector, k values to create the score vector

k.folds

integer, number of data splits used in the neural network, default 10

n.runs

integer, number of times to run the neural network to get the predictions, default 10

pred.thres

length-2 vector, top and bottom threshold on the predictions from the logistic classification, default c(0.05,0.95)

do.plot

a logical value to indicate whether to return ggplot objects showing the results, default True

plot.embedding

size N-by-2 matrix, 2D embedding for the cells

size

cell size to use in the plot, default 0.5

python.use

character string, the Python to use, default "/usr/bin/python"

GPU

which GPU to use, default ”, using CPU

Value

a list of results

da.ratio

score vector for each cell

da.pred

(mean) prediction from the neural network

da.cell.id

index for DA cells

pred.plot

ggplot object showing the predictions of logistic regression on plot.embedding

da.cells.plot

ggplot object highlighting cells of da.cell.idx on plot.embedding


JunZhao1990/DAseq documentation built on April 30, 2020, 10:10 a.m.