LP: Identification of pleiotropic and linked QTL in multiple line...

Description Usage Arguments Details Value Author(s) References Examples

Description

Identification of pleiotropic and linked QTL mapping in multiple-line cross populations, which is based on linear regression and likelihood ratio test

Usage

1
LP(vecPheno, PhenoData, GenoData_EST, GenoData_QTL, vecThrVal, CChr, Interval, nPB, alpha)

Arguments

vecPheno

The vector for interest traits name

PhenoData

The data frame for interest trait

GenoData_EST

Information about all marker genotype, where missing markers are estimated

GenoData_QTL

Information about all marker genotype with determined distance step, where missing markers are estimated

vecThrVal

A vector of threshold value

CChr

Current chromosome for pleiotropic and linked QTL test

Interval

Support interval for pleiotropic and linked QTL test

nPB

The number times of parametric bootstrap, default is 2000

alpha

Significant levels, default is 0.05

Details

Some required files must be prepared, including GeneticMap, GenoData, PhenoData and others

Value

Print information "The interest QTLs are linked QTL" or "The interest QTLs are pleiotropic QTL". Return a data frame for single trait QTL and pleiotropic or linked QTL information.

Author(s)

Junhui Li

References

Liu, W., Reif, J. C., Ranc, N., Porta, G. D., and Wurschum, T. (2012). Comparison of biometrical approaches for qtl detection in multiple segregating families. Theoretical and Applied Genetics, 125(5), 987-998.

Steinhoff, J., Liu, W., Maurer, H. P., Wurschum, T., Friedrich, H. L. C., and Ranc, N., et al. (2011). Multiple-line cross quantitative trait locus mapping in european elite maize. Crop Science, 51(6), 2505.

Knott, S. A., and Haley, C. S. (2000). Multitrait least squares for quantitative trait loci detection. Genetics, 156(2), 899-911.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
data(GenoData)
data(PhenoData)
data(GenoData_EST)
data(GenoData_S2)
vecPheno <- c("newEC1","newEC2")
croType <- "RIL"
Gn <- 7
GenoData_QTL <- GenoData_S2
alpha <- 0.1
CChr <- 14
vecThrVal <- c(5.210408e-05,4.99,5.05,6.91)
nPB <- 2000
Interval <- c(70.273,70.999,71.21,73.506)
#QTLresult <- LP(vecPheno,PhenoData,GenoData_EST,GenoData_QTL,vecThrVal,CChr,Interval,nPB,alpha)

JunhuiLi1017/JM4QTN documentation built on June 4, 2019, 4:10 a.m.