Description Usage Arguments Value Examples
estimate3D
: computes species diversity (Hill numbers with q = 0, 1 and 2) with a particular user-specified level of sample size or sample coverage.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
data |
(a) For |
diversity |
selection of diversity type: |
q |
a numerical vector specifying the diversity orders. Default is seq(0, 2, by = 0.2). |
datatype |
data type of input data: individual-based abundance data ( |
base |
selection of sample-size-based ( |
level |
A numerical vector specifying the particular sample sizes or sample coverages (between 0 and 1). |
nboot |
a positive integer specifying the number of bootstrap replications when assessing sampling uncertainty and constructing confidence intervals. Enter 0 to skip the bootstrap procedures. Default is 50. |
conf |
a positive number < 1 specifying the level of confidence interval. Default is 0.95. |
nT |
(required only when |
PDtree |
(required only when |
PDreftime |
(required only when |
PDtype |
(required only when |
FDdistM |
(required only when |
FDtype |
(required only when |
FDtau |
(required only when |
a data.frame
of species diversity table including the sample size, sample coverage,
method (rarefaction or extrapolation), and diversity estimates with q = 0, 1, and 2 for the user-specified sample size or sample coverage.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | # diversity = 'TD'
data(spider)
out1 <- estimate3D(spider, diversity = 'TD', q = c(0,1,2), datatype = "abundance", base = "size")
out1
# diversity = 'PD'
data(data.abu)
data <- data.abu$data
tree <- data.abu$tree
out2 <- estimate3D(data, diversity = 'PD', datatype = "abundance", base = "coverage", PDtree = tree)
out2
# diversity = 'FD' & FDtype = 'tau_values'
data(FunDdata.abu)
data <- FunDdata.abu$data
distM <- FunDdata.abu$dij
out3 <- estimate3D(data, diversity = 'FD', datatype = "abundance", base = "size", FDdistM = distM, FDtype = 'tau_values')
out3
# diversity = 'FD' & FDtype = 'AUC'
data(FunDdata.abu)
data <- FunDdata.abu$data
distM <- FunDdata.abu$dij
out4 <- estimate3D(data = data[,2], diversity = 'FD', datatype = "abundance", base = "coverage", nboot = 0, FDdistM = distM)
out4
## example for incidence-based data
# diversity = 'TD'
data(ant)
out5 <- estimate3D(ant, diversity = 'TD', q = c(0,1,2), datatype = "incidence_freq", base = "coverage", level=0.985)
out5
# diversity = 'PD'
data(data.inc)
data <- data.inc$data
tree <- data.inc$tree
nT <- data.inc$nT
out6 <- estimate3D(data, diversity = 'PD', datatype = "incidence_raw", base = "size", nT = nT, PDtree = tree)
out6
# diversity = 'FD' & FDtype = 'tau_values'
data(FunDdata.inc)
data <- FunDdata.inc$data
distM <- FunDdata.inc$dij
out7 <- estimate3D(data, diversity = 'FD', datatype = "incidence_freq", base = "coverage", FDdistM = distM, FDtype = 'tau_values')
out7
# diversity = 'FD' & FDtype = 'AUC'
data(FunDdata.inc)
data <- FunDdata.inc$data
distM <- FunDdata.inc$dij
out8 <- estimate3D(data, diversity = 'FD', datatype = "incidence_freq", base = "size", nboot = 20, FDdistM = distM)
out8
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.