Description Usage Arguments Value References Examples
Replaces missing values with non-zero estimates calculated using a selected method.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | msImpute(
data,
imputeMethod = c("halfmin", "bpca", "knn", "rf"),
kKnn = 5,
nPcs = 3,
maxIterRf = 10,
nTreeRf = 100,
compoundsAsNeighbors = FALSE,
compVars = c("mz", "rt"),
sampleVars = c("subject_id"),
colExtraText = NULL,
separator = NULL,
missingValue = NA,
returnToSE = FALSE,
returnToDF = FALSE
)
|
data |
Data set as either a data frame or 'SummarizedExperiement'. |
imputeMethod |
String specifying imputation method. Options are "halfmin" (half the minimum value), "bpca" (Bayesian PCA), and "knn" (k-nearest neighbors). |
kKnn |
Number of clusters for 'knn' method. |
nPcs |
Number of principle components used for re-estimation for 'bpca' method. |
maxIterRf |
Maximum number of iterations to be performed given the stopping criterion is not met beforehand for 'rf' method. |
nTreeRf |
Number of trees to grow in each forest for 'rf' method. |
compoundsAsNeighbors |
For KNN imputation. If TRUE, compounds will be used as neighbors rather than samples. Note that using compounds as neighbors is significantly slower than using samples. |
compVars |
Vector of the columns which identify compounds. If a 'SummarizedExperiment' is used for 'data', row variables will be used. |
sampleVars |
Vector of the ordered sample variables found in each sample column. |
colExtraText |
Any extra text to ignore at the beginning of the sample columns names. Unused for 'SummarizedExperiments'. |
separator |
Character or text separating each sample variable in sample columns. Unused for 'SummarizedExperiment'. |
missingValue |
Specifies the abundance value which indicates missing data. May be a numeric or 'NA'. |
returnToSE |
Logical value indicating whether to return as 'SummarizedExperiment' |
returnToDF |
Logical value indicating whether to return as data frame. |
A data frame or 'SummarizedExperiment' with missing data imputed. Default return type is set to match the data input but may be altered with the 'returnToSE' or 'returnToDF' arguments.
Oba, S.et al.(2003) A Bayesian missing value estimation for gene expression profile data. Bioinformatics, 19, 2088-2096
Stacklies, W.et al.(2007) pcaMethods A bioconductor package providing PCA methods for incomplete data. Bioinformatics, 23, 1164-1167.
A. Kowarik, M. Templ (2016) Imputation with R package VIM. Journal of Statistical Software, 74(7), 1-16.
Stekhoven D. J., & Buehlmann, P. (2012). MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | # Load, tidy, summarize, and filter example dataset
data(msquant)
summarizedDF <- msSummarize(msquant,
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "replicate",
"subject_id"),
cvMax = 0.50,
minPropPresent = 1/3,
colExtraText = "Neutral_Operator_Dif_Pos_",
separator = "_",
missingValue = 1)
filteredDF <- msFilter(summarizedDF,
filterPercent = 0.8,
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_")
# Impute dataset using 3 possible options
hmImputedDF <- msImpute(filteredDF, imputeMethod = "halfmin",
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_",
missingValue = 0)
bpcaImputedDF <- msImpute(filteredDF, imputeMethod = "bpca",
nPcs = 3,
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_",
missingValue = 0)
knnImputedDF <- msImpute(filteredDF, imputeMethod = "knn",
kKnn = 5,
compVars = c("mz", "rt"),
sampleVars = c("spike", "batch", "subject_id"),
separator = "_",
missingValue = 0)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.