View source: R/create_custom_interpolation.R
create_custom_interpolation | R Documentation |
This function takesthe typical PAM_data input, which is a nested list of different sensor data, all formatted at different time resolutions. By specifying a particular sensor, all data are formatted at the same temporal resolution as this data. By default, the median of data with smaller temporal resolution are kept, and data are interpolated.
create_custom_interpolation(dta, varint, interp = TRUE, summary = "median")
dta |
raw pam data see |
varint |
the variable of interest.Sipprots c("pressure","light","acceleration","temperature","magnetic"). For instance if all other variables should be summarised at the same temporal resolution as this specified variable. |
interp |
Default TRUE. Whether or not to replace NAs with interpolated values |
summary |
Can be "sum", "median" or "none". What type of summary variable to give when condensing data - |
reduced/summarised and interpolated dataset
## Not run:
data(bee_eater)
PAM_data = bee_eater
start = as.POSIXct("2015-08-01","%Y-%m-%d", tz="UTC")
end = as.POSIXct("2016-06-21","%Y-%m-%d", tz="UTC")
PAM_data = create_crop(PAM_data, start, end)
reduced_dta = create_custom_interpolation(PAM_data , "pressure", interp = FALSE)
head(reduced_dta)
reduced_dta = create_custom_interpolation(PAM_data , "act", interp = FALSE)
head(reduced_dta)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.