plot_sensorimage | R Documentation |
This function plots sensor data as an image. An actogram for instance is a type of sensor image.
plot_sensorimage(
date,
sensor_data,
tz = "UTC",
plotx = TRUE,
ploty = TRUE,
labelx = TRUE,
labely = TRUE,
offset = 0,
dt = NA,
xlab = "Hour",
ylab = "Date",
cex = 2,
na.col = "white",
col = c("black", viridis::magma(90)),
...
)
date |
Date data in POSIXct format, most commonly |
sensor_data |
sensor data, for example look at |
tz |
Time zone for POSIXct, default set to "UTC" |
plotx |
wherether or not to plot the x axis ticks + labels (for instance when compiling multifigures) |
ploty |
wherether or not to plot the y axis ticks + labels (for instance when compiling multifigures) |
labelx |
wherether or not to write the name of the x axis (for instance when compiling multifigures) |
labely |
wherether or not to write the name of the y axis (for instance when compiling multifigures) |
offset |
This parameter determines where the center of the graph is. When |
dt |
the time interval to which the data are resampled (secs). Default is |
xlab |
label for x-axis (as a character string) |
ylab |
label for y axis (as a character string) |
cex |
size of labels |
na.col |
colour given to NA values, default is "white" |
col |
Colour scheme of plot. Default |
... |
Any additional parameters used by graphics::image |
an image of the sensor data, for instance with activity it would produce an actogram
## Not run:
#specify the data location
data(hoopoe)
start = as.POSIXct("2016-07-01","%Y-%m-%d", tz="UTC")
end = as.POSIXct("2017-06-01","%Y-%m-%d", tz="UTC")
PAM_data = create_crop(hoopoe,start,end)
# Create plots with 3 together (mfrow)
par( mfrow= c(1,3), oma=c(0,2,0,6))
par(mar = c(4,2,4,2))
plot_sensorimage(PAM_data$acceleration$date, ploty=FALSE,
PAM_data$acceleration$act, main = "Activity",
col=c("black",viridis::cividis(90)), cex=1.2, cex.main = 2)
par(mar = c(4,2,4,2))
plot_sensorimage(PAM_data$pressure$date, plotx=TRUE, ploty=FALSE, labely=FALSE,
PAM_data$pressure$obs, main="Pressure",
col=c("black",viridis::cividis(90)), cex=1.2, cex.main = 2)
par(mar = c(4,2,4,2))
plot_sensorimage(PAM_data$temperature$date, labely=FALSE,
PAM_data$temperature$obs, main="Temperature",
col=c("black",viridis::cividis(90)), cex=1.2, cex.main = 2)
######################################################
# Look at a classification output
######################################################
# Classification
classification = classify_flap(dta = PAM_data$acceleration, period = 10, to_plot=FALSE)
par( mfrow= c(1,3), oma=c(0,2,0,6),mar = c(4,2,4,2))
plot_sensorimage(PAM_data$pressure$date, c(0,abs(diff(PAM_data$pressure$obs))),
main="Pressure difference",
ploty=FALSE,
col=c("black",viridis::cividis(90)), cex=1.2, cex.main = 2)
plot_sensorimage(PAM_data$acceleration$date, PAM_data$acceleration$act, main="Activity",
ploty=FALSE, labely=FALSE,
col=c(viridis::cividis(90)), cex=1.2, cex.main = 2)
plot_sensorimage(PAM_data$acceleration$date,
ifelse(classification$classification == classification$migration, 1,2),
main="Migration Classification",
labely=FALSE,
na.col="white",
col = c("orange","black"),
cex=1.2, cex.main = 2)
twilights <- GeoLight::twilightCalc(PAM_data$light$date,
PAM_data$light$obs,
LightThreshold = 2,
ask = FALSE)
plot_sensorimage_twilight(twilights$tFirst, offset=0,
col= ifelse(twilights$type == 1,
"goldenrod","cornflowerblue"),
pch=16, cex=0.5)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.