#########################################################################
###
### Content:
### This is the main file to perform some analyses of the mackerel tagging data
###
### Author:
### Kotaro Ono
### Contributor:
###
### Version: 1
###
################################################
#### Set the library path
.libPaths(c("C:/Program Files/R/R-3.6.2/library", "C:/Program Files/R/R-4.0.5/library"))
#### Installing required packages
#devtools::install_github("IMRpelagic/taggart", dependencies = FALSE)
# devtools::install_github("hafro/geo")
# source("R/download_data_functions.R")
library(taggart)
library(adehabitatHR)
library(tidyverse)
library(ggmap)
library(raster)
library(mgcv)
library(DHARMa)
library(bbmle) # package to perform model selection using AIC, AICc, etc.
library(glmmTMB)
library(gridExtra)
library(scatterpie)
library(ggplot2)
library(ggnewscale)
library(ggthemes)
library(TMB)
library(TMBhelper)
library(ggpubr) # very nice option for arrange and labeling multipanel plot for manuscript
library(sf)
library(DHARMa)
library(ggeffects)
library(groupdata2)
library(furrr)
tonum <- function(x) as.numeric(as.character(x))
#### loadig some shapefiles
new_proj <- 3035
Norway <- st_read("D:/Dropbox/IMR_projects/Shapefiles/ne_10m_land.shp")
Norway <- st_crop(Norway, c(xmin = -35, ymin = 51, xmax = 21, ymax = 73))
Norway_proj <- st_transform(Norway, crs=new_proj)
ICESecoregion <- st_read("D:/Dropbox/IMR_projects/Shapefiles/ICES_ecoregions_20171207_erase_ESRI.shp")
ICESecoregion_cut <- st_crop(ICESecoregion, c(xmin = -35, ymin = 51, xmax = 21, ymax = 73))
ICESecoregion_proj <- st_transform(ICESecoregion, crs=new_proj)
ICESecoregion_cut_proj <- st_transform(ICESecoregion_cut, crs=new_proj)
ggplot(ICESecoregion_cut_proj) + geom_sf(aes(geometry = geometry, fill=Ecoregion))
#### Now load the data for the analysis
cutoff_months = c(6:14)
Release_years = 2014:2021
source("R/0_prepare_data.R")
#### Some plotting of the data
ggplot(Norway) + geom_sf() + geom_jitter(data=Data_mackerel_use_Ireland_select_origin, aes(x=cLon, y=cLat, col=factor(Catch_month))) +
theme_bw() + facet_wrap(~Catch_year) + geom_hline(yintercept=62) + geom_vline(xintercept=-10)+ geom_vline(xintercept=-4, col="red")
ggplot(Norway) + geom_sf() + geom_jitter(data=Data_mackerel_use_Ireland_select_origin, aes(x=Longitude, y=Latitude, col=factor(Catch_month))) +
theme_bw() + facet_wrap(~Catch_year) + geom_hline(yintercept=62) + geom_vline(xintercept=-10)+ geom_vline(xintercept=-4, col="red") +
coord_sf(ylim=c(50, 60), xlim=c(-15,0))
#### Now load the functions for the analysis
source("R/Functions.R")
#### Then run the analysis
Dec_0lag <- run_directionality(month=14, data_origin="cycle1", model_selection = "none", scale = "linear", alpha = 0.05, weighting = TRUE)
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle1_IS.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_0lag[[1]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_0lag[[1]]$data, nsim=8000)
dev.off()
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle1_NO.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_0lag[[2]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_0lag[[2]]$data, nsim=8000)
dev.off()
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle1_NS.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_0lag[[3]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_0lag[[3]]$data, nsim=499)
dev.off()
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle1_IR.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_0lag[[4]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_0lag[[4]]$data)
dev.off()
Dec_1lag <- run_directionality(month=14, data_origin="cycle2", model_selection = "none", scale = "linear", weighting = TRUE)
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle2_IS.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_1lag[[1]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_1lag[[1]]$data %>% filter(!is.na(y)), nsim=499)
dev.off()
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle2_NO.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_1lag[[2]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_1lag[[2]]$data %>% filter(!is.na(y)), nsim=10000)
dev.off()
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle2_NS.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_1lag[[3]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_1lag[[3]]$data %>% filter(!is.na(y)), nsim=499)
dev.off()
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle2_IR.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_1lag[[4]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_1lag[[4]]$data %>% filter(!is.na(y)), nsim=5000)
dev.off()
Dec_2lag <- run_directionality(month=14, data_origin="cycle3", model_selection = "none",scale = "linear", weighting = TRUE)
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle3_IS.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_2lag[[3]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_2lag[[1]]$data %>% filter(!is.na(y)), nsim=2000)
dev.off()
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle3_NO.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_2lag[[2]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_2lag[[2]]$data %>% filter(!is.na(y)), nsim=499)
dev.off()
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle3_NS.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_2lag[[3]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_2lag[[3]]$data %>% filter(!is.na(y)), nsim=500)
dev.off()
png(filename=paste0(getwd(), "/MS/figs/Resid_cycle3_IR.png"), res=400, width=16, height=12, units="cm")
aaa <- Dec_2lag[[4]][[9]]
aaa$prior.weights = rep(1, length(aaa$prior.weights))
Resid_plot(mod=aaa, dat=Dec_2lag[[4]]$data %>% filter(!is.na(y)), nsim=499)
dev.off()
# main models based on model selection
Dec_0lag_AIC <- run_directionality(month=14, data_origin="cycle1", model_selection = "AIC", scale = "linear")
Dec_1lag_AIC <- run_directionality(month=14, data_origin="cycle2", model_selection = "AIC", scale = "linear")
Dec_2lag_AIC <- run_directionality(month=14, data_origin="cycle3", model_selection = "AIC", scale = "linear")
# Sensitivity
Jan_0lagb <- run_directionality(month=13, data_origin="cycle1", model_selection = "none", scale = "linear")
Jan_1lagb <- run_directionality(month=13, data_origin="cycle2", model_selection = "none", scale = "linear")
Jan_2lagb <- run_directionality(month=13, data_origin="cycle3", model_selection = "none", scale = "linear")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.